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Micro Abstract
The huge computational costs make classical Finite Element (FE) simulations of nonlinear structural
problems subjected to long-term or e.g. cyclic loading a challenging task. One approach to tackle this
is through Model Order Reduction (MOR). Space-time MOR leads to a low-dimensional nonlinear
system of equations which is solved in coarse time intervals, e.g. for each load cycle. Thus, remarkable
computational saving in terms of CPU time and memory space are attained.
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Introduction

Viscoelastic materials are widely used in industry, e.g. in aerospace, automotive and civil
engineering. In many applications viscoelastic materials are exposed to long-term loading condi-
tions. More precisely, rather slow creep processes and fast (generally cyclic but not necessarily
harmonic) processes with many repetitions are found.

It is challenging to perform classical finite element (FE) simulations of time-dependent nonlinear
problems in the presence of long-term loading: Overly many time increments may be needed
and the amount of information that needs to be stored can be substantial. In order to reduce
the computation time of long-term processes in the presence of (strongly) nonlinear viscoelastic
effects and for rather general boundary conditions (i.e. not limited to cyclic loadings) , the
authors propose the use of reduced order models, more precisely of a reduced basis (RB). While
RB methods are often used to compress spatial information at given time instances (e.g. the
displacement field and the internal variables at time t) [e.g., 2, 3], our current approach seeks
ansatz functions that work directly in the space-time domain. Each basis function of the RB
gives the full time-dependent field information on the entire spatial domain. The idea of using
space-time solution techniques is certainly not new in nonlinear solid mechanics and reference to
a long and rich history can be made. Noteworthy contributions have been developed under the
umbrella term LATIN (LArge Time INcrement) developed by Ladevèze and co-workers [e.g. 4,
to mention only few of the earlier references]. The relation between the proposed method and
LATIN-PGD approach will be disscussed in the talk.

1 Modeling

A nonlinear version of the Zener or Maxwell composed of a linear base elasticity in parallel to
several nonlinear Maxwell elements that exhibit a power-law creep behavior under isochoric
loading is used while the volumetric response is assumed linear (see Fig.1). In the current
work the constitutive modeling of the nonlinear viscoelastic solid is realized via internal state
variables within the framework of Generalized Standard Materials[GSM, e.g. 1]. The viscoelastic
materials are modeled via quadratic free-energy and nonquadratic dissipation potential. Although
this might appear restrictive, the framework contains also viscoplasticity and extensions to



Figure 1. Schematic representation of the nonlinear viscoelastic model under consideration

nonquadratic potentials and to kinematically nonlinear settings without major modifications
of the underlying methodology. Notably the considered formulation is almost identical to
Perzyna-type viscoplasticity of plastically incompressible materials.[e.g. 5]

2 Space-time reduced order model

In the considered framework the total and viscous strain fields defined as functions of space-time
are the unknowns that should be reduced. The snapshot Proper Orthogonal Decomposition
(POD) can be used in order to obtain a reasonable reduced basis (RB) for parameter-dependent
problems: first, “snapshots” are gained from the solution of high-fidelity (i.e. unreduced)
problems at given parameters (here: different loadings). Second, the obtained data is processed:
a correlation matrix is constructed and the leading eigenpairs are used to recombine the snapshots
in order to construct the RB. Here the focus is on the methodology for the computation of the
reduced coefficients in a space-time reduced setting and not on the construction of the RB.

2.1 Reduced basis ansatz for space-time problems

Consider that a long-term process with a time-dependent vector-valued variable ξ(t) ∈ Rd is
of interest. Our strategy is two-fold: first, the natural time (t) is partitioned into intervals or
cycles of variable length (see Fig.2). For simplicity the time discretization is assumed equidistant

Figure 2. Natural time t and microscopic time τi in the ith time interval (left: natural time; right: related
micro-time)

within each of the intervals. Then the natural time coordinate t within the i−th time interval is
expressed via a new “micro-time” τ via

t = t0i + τ τ ∈ [0, Ti). (1)

We do not intend to predict the structural behavior over the entire simulation time (i.e. over
thousands of load cycles) via a single reduced computation. Instead the problem is recast into
interval- or cycle-wise defined micro-problems and a space-time reduced model for the solution
on the individual intervals/cycles with appropriate transition conditions guaranteeing continuity
of the state variables is proposed [6]. This is a difference to several proposals related to the
proper generalized decomposition, where the full space-time solution is usually predicted in
single computation. In our reduced model we explicitly permit for variable loading conditions.



We assume that the RB and the reduced approximation of ξ(t) in a single load cycle i (t ∈ [t0i , t
0
i+1))

are given by the linear relation

ξ(i)(t) = L(i)
ξ

(τ) y(i), τ = t− t0i , y(i) ∈ Rm, (2)

L(i)
ξ

:

{
[0, Ti) → Rd×m,

τ → L(i)ξ .
(3)

In the above definitions L(i)ξ is the RB in time and y(i) is the vector of reduced coefficients. In
order to avoid the dependency of the RB on the time interval counter i while preserving variable
interval (or cycle) length Ti, the rescaled time coordinate τ̃ is introduced via

τ̃ =
τ

Ti
, τ̃ ∈ [0, 1). (4)

2.2 Continuity of the reduced fields

As schematically shown in Fig.2 the function ξ(t) is assumed to be time-continuous. This implies
that the approximation via the RB approach should also be time-continuous, i.e.

ξ(i)(τ → Ti)
!

= ξ(i+1)(τ = 0). (5)

Therefore two modifications of the RB approximation are suggested [6]:

• The modes are zero at the beginning of the time interval:

L(i)ξ (τ = 0) = L0ξ(τ̃ = 0) = 0. (6)

• The reduced approximation is obtained from (i) the time-dependent RB approximation
and (ii) a constant offset, i.e. via the affine relation

ξ(i)(τ) = L(i)ξ (τ) y(i) + ξ(i−1)(Ti−1). (7)

2.3 Reduced equilibrium conditions for the space-time reduced model

The reduced basis represents the behavior during a complete time interval/cycle through the
reduced unknowns. Once the reduced ansatz is established, it remains to define mechanically
motivated conditions for these reduced unknowns. These missing relations are found by enforcing
the stationary conditions of the time-continuous system in the weak sense over the current time
interval.

3 Validation methodology

In order to investigate the accuracy and performance of the proposed method different discrete
problems subjected to various types of loading conditions are considered. Two important points
are investigated:

• reproduction capability
Can the reduced computations reproduce the snapshot data up to the expected degree of
accuracy?

• prediction capability
What is the accuracy for loading conditions different from the offline phase (i.e. different
from the training data)? This concerns load frequencies (or loading/unloading times),
the sequence of frequencies, the shape of the loading and the load amplitudes, i.e. the
generalization of the load spectra from the offline phase.



Conclusions

A framework for nonlinear viscoelasticity is proposed . Other than within classical FE dis-
cretizations the internal variables are considered as additional unknowns of the (unreduced) FE
problem. The related discretization remains nonstandard and has several implications:

• The local constitutive model reduces to a straight-forward function evaluation.

• In contrast to standard FE problems the nodal displacements and the internal variables
are iterated simultaneously.

• No algorithmic tangent must be computed and most of the stiffness matrix is constant
which allows for fast assembly procedures.

The space-time reduced order model is established through the following steps:

• a subdivision of the natural time into intervals (or cycles);

• time re-scaling of the RB in order to account for the true rate of the state defining variables;

• the careful consideration of the continuity of the reduced ansatz across time intervals;

The developed method is applied to discrete mechanical systems consisting of networks of springs
and nonlinear dashpots. It is found that the reduced model using velocity-type test functions
has better accuracy and, at the same time, need less iterations to converge. With respect to the
numerical performance, the number of Newton Raphson iterations is low although all mechanical
and constitutive variables during the entire time interval/cycle are iterated simultaneously by
updating the reduced unknowns.
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