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Micro Abstract
Time effective product development is crucial to success. To obtain viable compromises in
aerospace applications, several arrangements with different disciplines have to be made. Those
determine the frequency of numerical studies, wherefore time is essential. Starting from a
research perspective, general design optimization will be presented. Thereafter, multiple industrial
examples will be given, where invested effort returns in performance, robustness and fewer arrangements.
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Introduction

With this conference contribution, a bridge from academic research work to actual industrial
application shall be outlined; mutually enrich each other. In industry, time effective product
development is often key to success. Project engineers are frequently working on more than one
single component, where each component involves multiple disciplines. So as to convergence to
feasible compromises in aerospace, several arrangements have to be made with mechanical, design,
thermal and even optic engineers. Those arrangements determine the frequency of numerical
studies; or in other words, span the period for not only the analysis and post-processing, but
also abstraction and model development. For deploying powerful and meaningful optimizations,
time is therefore essential. Or in other words, time being sped on optimization is often rare and
therefore needs be exploited with highest possible effectiveness. This is where academia comes
into play by providing the proper means.

1 Insights gained in academia

Design optimization is of the most use when it is applied as early as possible in the design process.
However, in those early design phases, not only mechanical but also others like economical,
thermal or techinical requirements have to be adressed as depicted in figure 1.
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Figure 1. Involved Disciplines in Optimization [1]

This multitude brings forth the two prominently faced challenges: multi-disciplinarity and
conflicting goals.



1.1 Multi-disciplinary

There are multiple occasions, where structural optimization involves the consideration of at least
another discipline. With the following figure such an example is given. The outlined A pillar not
only needed to be as light as possible while being stiff enough and withstanding external loads,
but moreover, also needed to be actually producible via braiding. Braiding is a cost effective
CFRP manufacturing technique.

Figure 2. A Pillar of a Roding roadster [1]

Manufacturing effort has been captured by emulating expert knowledge. This was realized by a
so called rule-based knowledge basis, which could be comprehended as another model covering
manufacturing aspects, i.e. technical discipline (see [3]).
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Figure 3. Capturing Expert Knowledge via rule-based systems

The tricky part then is, to actually incorporate this model into an optimization frame. In order
to so, the optimization engineer not only has to overcome the actual implementation, i.e. calling
of different solvers etc., but also the definition of a proper optimization task; see figure 4. The
latter is difficult because of the combination of different responses with different nature and
because of the necessity of defining an objective. Hence, which response shall serve as objective
or - in case of a combination of multiple responses in the objective function - how to weight
them. This is addressed within the field of multi-criteria optimization.



Optimization Process

Data

Interface

x0

y

Initial

xopt

ropt

Design

Optimization

Algorithm

Optimization

Model

Optimal

Design

Structural

Model
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Figure 4. Optimization task involving responses from three models

1.2 Multi-criteria optimization

Multi-criteria optimization addresses the handling of multiple objectives. Figure 5 depicts an
example, where a propeller needed to be optimized, such that it sustained all loads (air pressure,
deflecting etc.), had a specific modal performance so as to reduce tendency of flutter and of
curse, being easy to build along with low cost while still being as lightweight as possible.
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Figure 5. Design space of the propeller optimization task

Evidently, this brings forth a lot of conflicting goals. With the grey surface (Pareto Frontier in
figure 6) all optima found for the multi-criteria optimization task of maximizing first Eigenfre-
quency, minimizing effort and minimizing mass is given. Of course all requirements regarding
stiffness, i.e. maximum tip deflection and strength, sustaining air pressure loading are met for
each and every optima. The red points in that figure illustrate the result of a sophisticated
zero-order algorithm with proper settings and a large number of evaluations (see [4]). This shall
just highlight the difficulty in multi-criteria optimization, thus it is not only the design space
which exponentially levers the complexity but also the criteria space.

Conclusions and outlook

Within this extended abstract, only two challenges were briefly discussed. In industry, there are
more on top of that. This is mainly because, optimization in industry either needs to be applied
such that yields huge advantages at low costs and low model development times or it is simply
marking a necessity; such as topology optimization for 3D printing or inverse solution finding,
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Figure 6. Paretor frontier for the three objectives: mass, Eigenfrequency and manufacturing effort

e.g. mass operator method.

The final presentation will will first outline the challenges mentioned above and how to treat
them appropriately. While doing so, fundamental aspects of optimization such as sensitivities
and Lagrangian data will be linked to shadow prices and robustness. Those latter two will be
picked up in the second part, where industrial application is in focus. It will be shown how those
actually help to squeeze most of out a few optimization runs so as to support engineers in early
design phases of spacecraft structures.

Apart from that, optimization is gaining pace in industry; and this is partly because of 3D
printing. Latest results, as for instance given by [2], will be discussed at the end.
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