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Micro Abstract
Dielectric elastomer (DE) based actuators are considered an emerging promising class of thin
actuators, which may undergo large deformations and exhibit various modes of activation.
For modeling DEs there is a need for a proper finite element technology for the numerical
simulations, which captures their realistic response. A model that is calibrated to VHB
will be presented, and an efficient low-order finite element that is able to tackle locking
pathologies will be introduced.
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Introduction

Electro-active polymers (EAPs) are an emerging class of soft active materials, which may
experience large deformations when they are subjected to an external electric field. EAPs
are inexpensive light-weight polymeric materials, therefore, they are considered ideal
candidates for high performance low cost engineering applications. A typical actuator of
EAPs consist of a thin film, which is sandwiched between two flexible electrodes coating
its major surfaces. Applying an electric potential difference through the thickness, causes
thinning of the film and lateral expansion [5]. These changes occur due to Coulomb forces
between the opposite charges that accumulate on the major surfaces when an external
field is applied.

Referring to the literature, several research groups have dedicated their work to profoundly
study EAPs and provide efficient numerical tools. For instance, Steinmann’s research group
( [13], [10], [11], [12]) has developed variational principles and finite element formulations
accounting for the electro-mechanical coupling. Moreover, Ask et al. ( [1], [3], [2])
have studied the visco-elastic nature of the so called polyurethane using the standard
Bubnov-Galerkin approach. Later, Ask et al. [4] have presented a volumetric locking free
formulation, i.e., a mixed finite element formulation. Wissler and Mazza ( [16], [15], [17],
[14], [18]) have studied the so-called dielectric elastomer VHB, however in their works
they have adopted a hyper-elastic behavior combined with the quasi-linear viscoelastic
function.

Considering the aforesaid, there is a need of a computationally efficient finite element,
which is able to eliminate possible locking pathologies and account for the visco-elastic
behavior of EAPs. In this work, a solid-shell formulation is developed adopting both the
assumed natural inhomogeneous strain method ANIS and the enhanced assumed strain
method EAS. Furthermore, a strain energy function that accounts for the hyper-elastic



response, the viscoelastic response and the electromechanical coupling is presented.

1 Kinematics

In this section, both assumed natural inhomogeneous strain (ANIS) and enhanced assumed
strain (EAS) concepts are introduced. For a convenient presentation, let ξ = [ξ1, ξ2, ξ3]
be the isoparametric coordinates, and {ξ1, ξ2} be the inplane axes, while ξ3 indicates
the coordinate in the thickness direction. Thus, the reference and present covariant

tangent vectors are
{
Gi = ∂X

∂ξi
, gi = ∂x

∂ξi

}
, and the contravariant vectors are defined as{

Gi = ∂ξi
∂X
, gi = ∂ξi

∂x

}
. Now, using the covariant and contravariant basis vectors, the

Green-Lagrange strain tensor E is defined as

E = EijGi ⊗Gj, Eij =
1

2
(gi · gj −Gi ·Gj) . (1)

The key idea behind the ANIS is to interpolate the transverse covariant inhomogeneous
strain components, which are sampled in a given set of points placed on the element
mid-plane to overcome the curvature thickness locking and the transverse shear locking.
Specifically, the inhomogeneous strain tensor and its covariant components are given by

Einh = E− E0, E0 = E (ξ1 = 0, ξ2 = 0, ξ3 = 0) , Êinh,ij = Einh : (Gi ⊗Gj) . (2)

The components
{
Êinh,33, Êinh,13, Êinh,23

}
are evaluated in the sampling points and a

bilinear interpolation is applied for modifying the covariant inhomogeneous transverse
normal strain and a linear interpolation is applied for modifying the covariant inhomoge-
neous transverse shear strains (see [8]). The modified covariant inhomogeneous transverse

strains will denoted as
{
Ẽinh,33, Ẽinh,13, Ẽinh,23

}
. Then, the modified inhomogeneous strain

tensors is reconstructed as follows

EANIS
inh = Êinh,11

(
G1 ⊗G1

)
+ Êinh,12

(
G1 ⊗G2 + G2 ⊗G1

)
+ Êinh,22

(
G2 ⊗G2

)
+ Ẽinh,23

(
G2 ⊗G3 + G3 ⊗G2

)
+ Ẽinh,33

(
G3 ⊗G3

)
+ Ẽinh,13

(
G1 ⊗G3 + G3 ⊗G1

)
,

(3)

and the modified compatible strain tensor take the following form

Ẽc = E0 + EANIS
inh . (4)

For achieving a remedy for further possible locking phenomena, an additional tensor,
which is also known as the enhanced assumed strain (EAS) tensor is added to the modified
compatible strain tensor. Thus, the total strain tensor reads

Ẽ = Ẽc + Eenh (5)

2 Constitutive equations

In this section, we present the strain energy function, which has been considered for
modeling EAPs. Referring to the work of [7], an invariant based strain energy function
has been proposed, which lacks the effect of viscoelasticity. Using the Maxwellian ( [6]
and [9]) type rheological model of the isochoric response of the material consists of a
single elastic branch representing the elastic ground network as well as viscous branches



each of them representing a single mobile viscous sub-network, the strain energy function
can be extended to include the viscous branches. Thus, the total strain energy function is
given by

W =
K

4

(
J2 − 1− 2ln (J)

)
+

3∑
i=1

Ci
(
Ī1 − 3

)i
︸ ︷︷ ︸

Whyper(C)

−1

2
Jε0εrC

−1 : (E ⊗E)︸ ︷︷ ︸
Wcoup(C,E)

+
n∑
i=1

1

2
µvi [C′ : Ai − 3− ln (det (Ai))]︸ ︷︷ ︸

Wviscus(C,A1..An)

(6)

where {A1, ....An} are strain-like internal tensorial variables associated with the viscus
Maxwell branches and {µv1..., µvn} are the viscous shear moduli of the branches. The
evolution law of a single strain like internal variable is given by

Ȧi =
1

τ vi

(
C′
−1 −Ai

)
, (7)

with {τ v1 ....τ vn} are the relaxation times of the different Maxwell branches.

3 Variational principles

The functional of the total potential energy is expressed with the internal energy part due
to the strain energy function, and to external part due to external tractions and electrical
fluxes as the following

Π(C̃,E) = Πint − Πext =

∫
Ω0

W (C̃,E)dΩ0 −

[∫
∂BT0

u ·TdΓ0 +

∫
∂BQ0

φQdΓ0

]
(8)

where Ω0 is the volume of the reference configuration. Applying Hu-Washizu multi-field
variational principle, the variation of the internal potential energy is decomposed into two
parts, one with respect to the modified right Cauchy-Green and the other with respect to
the electric field,

δΠ =

∫
Ω0

S̃ : δẼcdΩ0︸ ︷︷ ︸
δΠint,u

C̃

+

∫
Ω0

S̃ : δEenhdΩ0︸ ︷︷ ︸
δΠint,α

C̃

−
∫

Ω0

D · δE︸ ︷︷ ︸
δΠintE

−δΠext (9)

where S̃ = 2∂W
∂C̃

is the second Piola-Kirchhoff evaluated within the modified C̃ = 2Ẽ + I,

and D = −∂W
∂E

is the electric displacement vector. The internal variables controlling
the enhanced strain filed are determined from the fact that these internal variables are
workless, δΠint,α

C̃
= 0. Finally, the linearizing of the variation takes the following form,

∆δΠint =

∫
Ω0

[(
∆Ẽc + ∆Eenh

)
: C̃uu : δẼc + S̃ : ∆δẼc + ∆E · C̃uφ : δẼcdΩ0

+
(

∆Ẽc + ∆Eenh
)

: C̃φu · δE −∆E · C̃φφ · δE
]
dΩ0

(10)

where C̃uu = 4 ∂W

∂C̃∂C̃
is the material tangent modulus tensor, C̃uφ = 2 ∂W

∂C̃∂E
and C̃φu =

2 ∂W

∂E∂C̃
are the mixed derivatives third order tensors, and C̃φφ = − ∂W

∂E∂E
is the electric

displacement tangent tensor.



4 Numerical example

Adopting the parameters set that we have obtained in our previous research work for
VHB, a numerical example is presented here. In this example, we consider a bimorph
bending actuator of a bi-layered thin film. The actuator dimensions have been chosen as
demonstrated in Fig. 2, where L1 = 20mm, L2 = 5mm and L3 = 1mm. The thickness
consists of two thin layers, where each of them is 0.5mm thick. A coarse mesh of 10
elements in the length direction, 2 elements in the width and 2 elements in the thickness
direction has been chosen as demonstrated in fig. 1.

Figure 1. The coarse mesh that has been used for the simulation

The bottom layer is sandwiched between a pair of compliant electrodes located at the
composite’s bottom and in the mid plane on which potential differences can be applied,
and the upper layer is electrically passive. Applying voltage causes a reduction in the
thickness of the bottom layer, and at the same time, a lateral expansion. Since the active
layer is perfectly adhered to the passive layer, the structure gradually bends towards the
active layer.

L1
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L3

e1

e2
e3

(a) (b) (c)

Figure 2. (a) The reference configuration of the actuator, t=0 sec. (b) The actuator at t=50(sec).
(c)The current configuration of the actuator, t=150 sec.

The actuator is subjected to a voltage of 5kV, which is linearly ramped over a time period
of 50 sec and followed by a constant value for 100 sec. Both horizontal and vertical
displacements of a selected point A (the tip of the beam) were calculated and plotted
in Fig. 3. When the linear voltage load is applied, i.e, t ≤ 50sec, the actuator exhibits



highly nonlinear deformations. The actuator undergoes additional deformations due to
creeping when the voltage is hold fix. As shown in Fig. 3, the additional displacements
while creeping are not negligible, and this is because of the highly viscoelastic response of
EAPs.
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Figure 3. The normalized displacements, in both horizontal and vertical directions.

5 Conclusions

In this work, a numerical scheme accounting for the electro-mechanical coupling, the
time-dependent response and the incompressibility has been developed for modelling
EAPs. For this objective, the strain energy function has been split into a hyper-elastic
term, a visco-elastic term and a coupling term. Following, a solid-shell finite element
has been developed for avoiding several locking phenomena observed in thin structures.
In summary, an efficient low order numerical tool has been developed in this work for
modeling EAPs.
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