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Micro Abstract
This study presents computational simulation of rock cutting process using disc cutters, a typical process
involved in mechanized rock excavation works. Peridynamics, a nonlocal continuum formulation, is used to
model the LCM (linear cutting machine) test of rock cutting with a single TBM (tunnel boring machine) disc
cutter. The presented numerical model enables the investigation of different cutting forces as well as of the
stress and pressure distribution during the tool-rock interaction.

1Institute for Structural Mechanics, Ruhr University Bochum, Germany

*Corresponding author: sahir.butt@rub.de

Introduction
In an excavation process using a Tunnel Boring Machine (TBM), rock cutting is performed by means of
cutting discs (see Fig.1b) installed on a rotating cutter head (see Fig.1a) of the TBM, which is pressed
against the tunnel face. As the disc is forced into the rock, a crushed zone develops. As the disc continues
to move further, the stresses are further increased in the crushed zone and radial cracks are initiated, as
shown in Fig.1c. These cracks coalesce with the cracks initiated from the adjacent cutting disc and the
rock mass is disintegrated. This interaction between the rock and a cutting disc can be characterized by the
reaction force at the disc. The reaction force is decomposed into normal, rolling and side forces, depicted
in Fig.1d. These forces for a single disc cutter needs to be estimated in order to predict the performance
of a TBM, i.e. the global torque and thrust requirements. A Linear Cutting Machine (LCM) test [5]
was developed at the Colorado School of Mines (CSM), which it is used to predict the performance of a
single cutting tool. In the LCM experiment the cutting disc moves along the rock specimen at a known
penetration level and the cutting forces (see Fig.1d) are measured at the cutting disc.

A number of empirical models have been developed for the estimation of the process parameters (such
as required thrust, penetration rate, specific energy, etc.). One of the popular performance prediction
models in this category is the Colorado School of Mines (CSM) model [5]. However, empirical models
are restricted by the availability of historical data as well as details of the rock material properties.
Alternatively, numerical analysis can be applied to simulate the LCM test, which can incorporate a
larger range of rock material properties as compared to empirical models. The excavation process in
brittle rock involves complex fracture paths and fragmentation. In this study, we model this process
using peridynamics [1, 6, 7], a recently developed nonlocal continuum model, which provides a suitable
environment to model physical phenomena involving discontinuities. Simulations of LCM test are carried
out at different level of penetrations and the cutting forces are compared with the experimental results
presented in [2].

Peridynamic formulation
The peridynamic continuum formulation allows the direct interaction of a material point x with a set
of material points x′, within a volume defined by a cut-off radius δ, known as the peridynamic horizon
Hx [6]. This notion of direct connectivity between the material points is referred to as a bond. For a three
dimensional peridynamic body, the balance of momentum at a material point x, at time t, is given by

ρ(x, t)
∂2u(x, t)
∂t2

=

∫
Hx

[
T[x, t]〈x′ − x〉 − T[x′, t]〈x− x′〉

]
dVx′ + b(x, t), (1)



(a) TBM cutter head (b) TBM disc cutters (c) Rock failure mechanicsm (d) Cutting forces

Figure 1. Illustration of disc cutters in TBMs

where T[x, t] is the force state at x and T[x, t]〈x′ − x〉 is the force, which a material point x exerts on x′.
Angular brackets are used to denote quantities that T operates on. For an ordinary state-based peridynamic
model [7], the force state T[x, t] is characterized by a magnitude, i.e. a scalar state t[x, t] and a direction,
provided by the unit vector state M[x, t]:

T[x, t] = t[x, t] M[x, t], M[x, t]〈ξξξ〉 = Y[x, t]〈ξξξ〉
|Y[x, t]〈ξξξ〉|

=
y′ − y
|y′ − y|

, (2)

Y[x, t] is the deformation state defined as Y[x, t]〈x′ − x〉 = y′ − y = (x′ + u′)− (x + u), where y′ − y
and u′ − u are the deformed relative position vector and the relative displacement vector of the bond
x′ − x (see Fig.2a). The scalar force state t[x, t] depends on a scalar stretch-like quantity, denoted as the
extension state e[x, t] which characterizes the kinematics of the model, it is defined as e〈ξξξ〉 = |Y〈ξξξ〉|− |ξξξ|,
where we use x′ − x = ξξξ. The extension state e is further decomposed additively into an isotropic (ei)
and a deviatoric (ed) extension states. The isotropic extension state is then represented in terms of a
scalar-valued volume dilatation θ(e) that is defined to match the volumetric strain of a classical continuum
model under isotropic loading conditions.
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(a) Kinematics of a peridynamic body:
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(b) Scematic of missing peridynamic
bonds [4]

Figure 2

Damage in peridynamics is modeled by breaking the connection/bond between particles. A bond is not
allowed to contribute in the internal force calculation once it is broken. In this study we use a critical
stretch criteria to break the bonds. The bond between two particles breaks irreversibly once the stretch
(s = e〈ξξξ〉/|ξξξ|) exceeds the predefined critical stretch sc. The critical stretch is calibrated by performing a
series of tensile tests and the stretch which reproduces the tensile strength of the material is selected.

PALS model
Due to the nonlocal nature of peridynamics, it becomes inaccurate at points near the surface because
some of the peridyamic bonds that would be present in the interior of the material are missing as shown
in Fig.2b. In the PALS model, to compute the elastic energy density at a point, two different influence
functions (the functions giving weights to nonlocal integrals) are used for the isotropic and the deviatoric
deformations. According to [4], it is defined as

W (θ, ed) =
1

2
Kθ2 + µ(σ ed) • ed, θ = (ω x) • e, (3)



where, x is a scalar state with x〈ξξξ〉 = |ξξξ|, ω is the dilatation influence function, σ is the deviatoric
influence function and the symbol ’•’ denotes the dot product of two states as defined in [7].

The influence function ω is found by starting from an initial influence function ω0, which is arbitrary.
Furthermore, k linearly independent deformation gradient tensors Hk are chosen (In three dimensions,
k = 6 is sufficient because there can be only six linearly independent strain tensors). The extension state
ek corresponding to the deformation gradient Hk is found as ek〈ξξξ〉 = (ξξξ ·Hk · ξξξ)/|ξξξ|. Now the influence
function ω is constructed as an approximation of ω0, satisfying the constraint that the dilatation evaluated
using Eq.(3)2 with the extension state ek equals the trace of the deformation gradient Hk. To find ω, a
functional I is defined as

I(ω, λ1, . . . , λk) =
1

2
(ω − ω0) • (ω − ω0)−

k∑
i=1

λi[(ω x) • ei − trace(Hi)]. (4)

The functional I is required to be stationary with respect to ω and λ1, . . . , λk, leading to

∂I

∂ω
= 0 =⇒ ω = ω0 +

k∑
j=1

λjx ej ,
∂I

∂λk
= 0 =⇒ (ω x) • ek = trace(Hk). (5)

To evaluate λ1, . . . , λk, we solve a k × k system of equations given by Eq.(5)2. Once λ1, . . . , λk are
known, the influence function ω is constructed according to Eq.(5)1 and normalized with a constant factor
c, to satisfy (c ω x) • x = D, where D is the number of dimensions. A similar procedure is followed for
the deviatoric influence function σ (see [4] for details).

Contact formulation
The most common method used to model contact in peridynamics is the short-range force approach of
Silling and Askari [6]. The normal and tangential contact forces are exerted at a peridynamic node y by
all the nodes yj in a close proximity satisfying |yj − y| < rc,where rc is a predefined contact radius. The
normal contact force fn(yj − y) (i.e. the force that yj exerts on y) is found using

fn(yj − y) = cf

( |yj − y| − rc
δ

)
Vj nn, nn =

(yj − y)
|yj − y|

. (6)

Vj is the volume of the node yj and cf is a constant coefficient representing the stiffness for the repulsive
forces [3]. Tangential/frictional force ft is calculated using the normal force fn as

ft(yj − y) = −µ |fn(yj − y)| nt, nt =
vrel
|vrel|

. (7)

µ is the coefficient of friction and nt is a unit vector in the direction of the relative tangential velocity vrel
of the nodes y ad yj . Finally, the total contact force fc at the node y is found by the sum of fn(yj − y)
and ft(yj − y), from Eq.(6) and Eq.(7) for all yj nodes.

Numerical analysis of the LCM test
Numerical simulations of the LCM test are carried out with a single disc cutter of 0.4318m diameter. The
rock specimen with the dimensions of 0.4m×0.4m×0.15m is used in the simulation. The experiment [2]
was carried out with a Colorado red granite sample at different level of penetrations at three different
spacings. The penetration p is kept at a constant value for each cut. The material parameters for the rock
specimen are used as in the experiment from [2]. By calibration, the critical stretch sc = 0.0022m is
found to reproduce the tensile strength of the rock used in the experiment. The domain is discretized
with a resolution of 0.005m and the peridynamic horizon is selected as δ = 0.016m. Simulations are
carried out using Peridigm [3], a peridynamics code developed at Sandia National Laboratories. In Fig.3a,
simulation of the LCM test with a single disc cutter, at a penetration of p = 7mm is shown. The average
normal forces obtained from peridynamic simulations are plotted against different levels of penetration
(p = 3, 4, 6, 7mm) in Fig.3b, they show a good agreement with the experimental data [2] (with a disc
spacing of 76mm).
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(a) Peridynamic simulation of the LCM test
at a penetration of 7mm
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(b) Comparison of the average normal forces obtained
from peridynamics and the experiment [2]

Figure 3

Conclusions
A peridynamic model for rock cutting using disc cutters is presented. To address the surface effects of
peridynamics, a Position Aware Linear Solid (PALS) material model is used. A number of simulations
for the LCM test at different level of penetrations are carried out. The average normal cutting force
computed from peridynamics is compared with the experimental data for different level of penetrations.
The simulation results are in a good agreement with the experimental data. Future research will be
devoted to the simulation of interactions between multiple discs at various spacings.
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