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Micro Abstract
Within this work, we compute and apply control strategies for the time-minimal path of a slot car racer.
Here, the DMOC (Discrete Mechanics and Optimal Control) method is used to generate offline optimal
trajectories for the electro-mechanically coupled system, i.e. sequences of discrete configurations and
driving voltages. These sequences are embedded to a control architecture with an underling camera
tracking system which allows to correct the vehicle towards the desired state via computer.
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Introduction

In order to describe and control the behavior of a slot car racer, a suitable simulation model is
required. The functional principle of this electric vehicle merges mechanics and electronics and
can generally be described in terms of differential equations by physical laws, such as Faraday’s
law, Coulomb’s law, Kirchhoff’s law and d’Alembert’s principle. These second-order differential
equations can be obtained via a variational principle based on an energy functional [1, 6].
The optimal control simulation method in this work is a direct discretization technique for
mechanical systems – that has been extended for mechatronical systems – known as DMOC [4]
and is based on a discrete variational principle. The derivation of the system dynamics with
discrete variational calculus requires to formulate the electrical, magnetic and mechanical energy
of the system and to apply the discrete Lagrange-d’Alembert principle. This is less common in
electrical engineering but leads to a structure preserving time stepping scheme which serves as
equality constraints for the nonlinear programming problem, resulting from the discretization of
the optimal control problem by DMOC [2–5].
The computed optimal voltage profiles are embedded into an experimental setup for a slot car
racer with an underlying camera tracking system which allows to correct the vehicle towards the
desired state via a computer. Furthermore, the tracking allows to analyze the system, fit the
model parameters and measure the maximal admissible velocity for the race track, which also
serve as constraints for the optimal control problem.

1 Discrete mechanics and optimal control

In this section, we present a simulation method for the optimal control of a mechatronic system
that is based on a discrete variational principle and apply it to compute the time-minimal path
of a slot car racer. Here, DMOC makes use of the discrete forced Euler-Lagrange equations to
generate offline optimal trajectories for the electro-mechanically coupled system.

1.1 Discrete forced Euler-Lagrange equations

In general, the discrete variational principle yields discrete time stepping equations. Their
solution approximates the solution of the forced Euler-Lagrange equations and inherits certain
characteristic properties of the continuous solution. According to the discrete variational principle,
we choose a time grid ∆t = {t0, t1, ..., tN} for the discrete path qd = {qn}Nn=0 with step size h ∈ R
and the midpoint rule for the approximation of the integrals in the Lagrange-d’Alembert principle.



Figure 1. Idealized model of a DC motor Figure 2. Slot car model

The discrete forced Euler-Lagrange equations for n = 1, ..., N − 1

D1Ld(qn,qn+1) +D2Ld(qn−1,qn) + f−d (qn,qn+1,un) + f+d (qn−1,qn,un) = 0 (1)

follow from the discrete Lagrange-d’Alembert principle, where D•Ld is the slot derivative with
respect to the •-th argument and fd are the discrete forces. The discrete momenta are given
by the discrete Legendre transformation as p−

n = −D1Ld(qn,qn+1) − f−d (qn,qn+1,un) and
p+
n = D2Ld(qn−1,qn) + f+d (qn−1,qn,un), where p−

0 is used for the fist time step.

1.2 Discrete optimal control problem

The DMOC method deals with the problem of finding the discrete control forces ud = {un}N−1
n=0

with respect to a – in terms of discrete Euler-Lagrange equations – given system such that a
certain discrete objective function Jd or, respectively, a discrete cost function Cd is minimized,
i.e.

min
qd,ud

Jd(qd,ud, h) = min
qd,ud,h

N−1∑
n=0

Cd(qn,qn+1,un, h) subject to
· equation (1)
· initial and final conditions
· additional constraints

(2)

Herein, the infinite dimensional optimal control problem is transcribed into a finite dimensional
nonlinear programming problem that can be solved by any standard algorithm, e.g. Sequential
Quadratic Programming (SQP).

2 Implementation for the slot car racer

Assuming that the considered slot car has an idealized DC motor (see Fig. 1), the discrete

path qd =
{

[Qn, ϕn]T
}N
n=0

comprises the total amount of moving electric charge Qn, that has
passed any point of the motor windings – where ϕn denotes the rotation angle – at each time step.
The discrete control parameter ud = {Un}N−1

n=0 is reduced to a sequence of driving voltages Un

and the current In is defined as flow electric charges over time. In the case of a DC motor, the
Lagrangian consists only of the magnetic-field coenergy and the mechanical energy of the motor
shaft, such that the discrete Lagrangian reads

Ld(qn,qn+1) =
h

2

{
La

h2
(Qn+1 −Qn)2 +

K

2h
(ϕn+1 + ϕn) (Qn+1 −Qn)

+
θ

h2
(ϕn+1 − ϕn)2

} (3)

where Θ denotes the inertia of the rigid motor shaft, La is the inductance of the windings and
K is a machine constant. The discrete forces (with arguments as in equation (1)) are given by

f−d =

[
hUn + Ra

2 (Qn+1 −Qn)
h
4 (Mn+1 +Mn)

]
f+d =

[
hUn − Ra

2 (Qn −Qn−1)
h
4 (Mn +Mn−1)

]
(4)



with the external friction torque Mn = r
i (Fc tanh(vn) + τvvn) and the power dissipation −RaIn.

Herein, a continuous velocity-based friction model – with sliding friction Fc and the viscous
friction parameter τv – approximates the friction force acting of the slot car. The current is
written as a finite difference In = (Qn+1−Qn)

h . Under the assumption of a slip-less rolling tire with

radius r and the gear ratio of the slot car i, we can compute the velocity vn = r
i
ϕn+1−ϕn

h and the
covered distance sn+1 = sn + vnh of the vehicle (Fig. 2). For this electro-mechanically coupled
system the general momenta pn = [pQn , p

ϕ
n]T consist of the flux linkage pQn and the mechanical

momentum pϕn at each time step.

2.1 Objective function and additional constraints

The time-minimal path can be modeled using different cost functions, were the problem of
minimizing the lap time is equivalent to maximizing the velocity – or momentum – for each
lap. Within this work, we concentrate on a combined objective function Jd that minimizes the
lap time – which corresponds to the sum of time steps – together with the change of driving
voltages.

Jd(qd,ud, h) = cu

N−1∑
n=0

(
Un+1 − Un

h

)2

+
N∑

n=0

h (5)

Herein, the weighting factor cu ∈ R ensures that the influence of lap time and driving voltages
on the cost function are of the same order of magnitude. Furthermore, we can substitute the
sum of time steps Jt with the negative sum of the quadratic velocities Jv or the negative sum of
the quadratic momenta Jp.

Jt(h) =
N∑

n=0

h Jv(qd, h) = −
N−1∑
n=0

(
sn+1 − sn

h

)2

Jp(qd, h) = −
N−1∑
n=0

(
pϕ−n

)2
(6)

To prevent the slot car from flying off the track, constraints limit the maximal admissible
velocities (7) for the track. Here, 14 segments (right curves, left curves and straight elements)

vn ≤


ṽ1 for s̃0 ≤ s < s̃1
ṽ2 for s̃1 ≤ s < s̃2
...

...
ṽ14 for s̃13 ≤ s ≤ s̃14

(7)


−∞
s0

Umin

hmin

 ≤


Q
s
U
h

 ≤

∞
sN

Umax

hmax

 (8)

with length s̃i form the track, for which maximal admissible velocities ṽi are determined with the
camera tracking system. Bounds for the simulation variables (8) guarantee meaningful results.
Further constraints define the start position s0 and the final position sN .

2.2 Numerical example

As a numerical example, we show the fastest admissible lap, where the vehicle starts with zero
acceleration and crosses the finish line with maximal velocity. Here, the parameters Ra = 4 Ω,
La = 2× 10−2 H, K = 4× 10−3 Nm/(radA), Fc = 2.74× 10−1 N and τv = 7.81× 10−1 Ns/m are
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Figure 3. Driving voltage versus covered distance
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Figure 4. Driving voltage versus track position
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Figure 5. Motor current versus covered distance
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Figure 6. Vehicle velocity versus covered distance

used. The track-length is 9 m, the maximum operating voltage of the DC motor is 12 V and
the direction of travel is shown in Fig. 4. The calculated optimal driving voltage for the time
minimal path respecting the maximal admissible velocity for the race track are shown in Fig. 3
and Fig. 4. The experimental setup makes it possible to apply this voltage profiles directly to the
slot car racer via a computer. Fig. 5 shows the associated motor current and Fig. 6 the velocity
of the slot car including the segmentation of the track. As initial guess, a forward dynamics
simulation is used. Minimizing the lap time – by including the time step h as an optimization
variable in addition to qd and ud – with the fmincon solver from Matlab yields the same result
for all three objective functions except of a small numerical error.

Conclusions

This work covers the numerical solution of an optimal control problem for a slot car racer.
We investigate several objective functions to minimize the lap time, which influences only the
computational effort. Table 1 shows the necessary computational time and iterations to solve
the nonlinear programming problem. Obviously, using the approximation for the velocity in
Jv influences the computational time and iterations in a negative way. Using the conjugate
momentum instead – i.e. the actual momentum at the n-th time node – is physically motivated
and also yields the lowest number of iterations. The objective function Jt serves as comparative
quantity.

computational time iterations lap time
Jt(qd) 745 s 297 3.84 s
Jv(qd) 2012 s 525 3.84 s
Jp(qd) 217 s 96 3.84 s

Table 1. Computational time and iterations
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