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Micro Abstract
In this contribution, the numerical simulation of brittle fracture of glass materials under room
temperature is carried out on a continuum-mechanical scale using the theory of linear elasticity and
J-integral theory, extended by a phase-field modelling (PFM) approach. Following this, behaviours
such as crack nucleation, propagation, and bulk material fracture can be realised. Moreover, fracture
stresses and J-integral values are compared to analyse material toughness.
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Introduction

The fracture of glass materials in hot forming processes can directly lead to production inefficiency.
Taking the precision glass moulding process (PGM) as an example, the working temperature is
near the glass transition temperature (Tg) and the glass material represents either linear elastic
or viscoelastic behaviour, which leads to the temperature and strain-rate dependency of glass
fracture behaviour. The fracture of glass is initiated by micro cracks and propagates under
tensile stresses. One of the most commonly used experimental methods for the analysis of glass
fracture is the three-point bending test, in which a glass specimen with a rectangular or circular
cross section is bent until fracture. To describe the behaviour of glass fracture on a macroscopic
scale under both linear elastic and visoelastic model assumptions, the approach based on the
J-integral theory [6] is applied. In the mean time, the brittle crack of the glass specimen at
ambient temperature is described using a phase-field modelling (PFM) approach [2, 4, 5]. A
combination of the two approaches is realised by the critical Griffith energy release rate (Gc) [1],
which will be further explained.

1 Mathematical modelling

1.1 Phase-field modelling

The starting point of the PFM is the Griffith’s energy-based criteria for brittle fracture [1], which
initiated the concept of the critical fracture energy density Gc that represents the energy required
to create a unit area of fracture surface. The global potential energy function Ψ of a cracked
linear elastic, isotropic solid material can be defined as the sum of the elastic strain energy Ψel

and the crack energy Ψcr integrated over the whole spatial domain. This integration can be
achieved by inclusion of the phenomenological phase-field variable φ to distinguish between the
cracked (φ = 0) and the undamaged (φ = 1) states of the material:

Ψ = Ψel + Ψcr =
G

4ε
(1− φ)2 +Gε|gradφ|2 + [(1− η)(φ)2 + η]Ψ+

el + Ψ−
el . (1)

Herein, ε is the internal length that is related to the width of the transition area between the
cracked and the unbroken states and η is the residual stiffness. The fracture energy part is
obtained from the non-local quadratic approximation; while the elastic energy part is divided



into positive and negative parts, which represent tensile and compressive modes, respectively.
We assume a dynamic state for the present problem and neglect the body forces. By applying the
Ginzburg-Landau evolution equation [2], the momentum balance equation and the phase-field
evolution equation can be expressed as

divσ = ρv̇ and φ̇ =
∂φ

∂t
= −M∂ψ

∂φ
= −M [2(1−η)φψ+

elast−
Gc

2ε
(1−φ)−2εGcdiv(gradφ)], (2)

where σ is the stress tensor, ρ(x, t) is the mass density and v(x, t) is the velocity. M ≥ 0
represents a scalar-valued kinetic parameter related to the interface mobility (time dependency).
Gc is the critical Griffith energy release rate, which represents the critical fracture energy.

1.2 J-integral theory

The further application of the J-integral approach extends the material model to the viscoelastic
range. The J-integral was first given by Rice [6] as a path-independent line integral around the
crack tip, which takes the form

J =

∫
L

(Wdx2 − t · ∂u
∂x1

ds), (3)

where W (x1, x2) is the strain energy density, x1 and x2 are the coordinate directions, t = σn is
the surface traction vector, σ is the stress tensor, n is the normal to the curve L, which is an
integral curve surrounding the crack tip, s is the crack length and u is the displacement vector.
For brittle fracture, a bridge is built by Jc = Gc [1,6], where J-integral results are directly applied
to PFM modelling. In 2D analysis, with the introduction of the finite element method and
reasonable approximations, the numerical calculation of the J-integral can be further simplified
to

J =

∫
A

[(σxx
∂u

∂x
) + τxy

(∂v

∂x
− ω)

∂q

∂x
+ (τxy

∂u

∂x
+ σyy

∂v

∂x
)
∂q

∂y
]dA, (4)

where q(x, y) must have a certain value on each node of the integral area, which takes the value
q = 1 on the internal boundary and q = 0 on the external boundary for a plane problem. For
elastic materials, ω is the elastic strain energy. For viscoelastic materials, it represents the
equivalent elastic strain energy, which is the total area under the uni-axial stress-strain curve.

2 Results and discussion

To study both brittle and ductile fracture behaviour of glass material, a square-shaped, double
symmetric problem, which is based on the three-point bending experiment illustrated in Fig. 1, is
presented. The glass specimen is subjected by a constant strain rate from the presser downwards
until a crack occurs. The glass specimens used for the experiments are of a rectangular cross
section. They are made of three different types of glass materials for comparison, namely, the
glass material H-K9L, L-BAL42 and SQ1. The selection of the three materials is based on their
representative characteristics from different chemical compositions as well as different Tg.

According to Table 1, for each of the 12 temperatures, one higher strain rate and one lower strain
rate are selected, altogether 24 sets of experiments are performed. For each set of experiment,
15-30 bending tests are performed considering numerical accuracy.

The selection of the higher strain rates aims at obtaining the brittle fracture state; while the
selection of the lower strain rates is most critical, where a special state needs to be found when
the majority of the glass specimens are just about to relax (unbroken), however in the end still
break. In this way, a peak into the glass behaviour in the brittle-ductile fracture transition
region is realised.

By applying PFM, the progress of the crack of brittle fracture is illustrated in Fig. 2 . The
crack propagates perpendicular to the maximum principal stress, which agrees with many



L-BAL42 H-K9L SQ1

lgη [dPa·s] T [◦C] lgη [dPa·s] T [◦C] lgη [dPa·s] T [◦C]

- 20 - 20 - 20

14.5 511

12.5 560 (Tg) 13.1 1075 (Tg) 12.4 506 (Tg)

12 575

11 600 11 1250 11 532

10 630

Table 1. Representative viscosity values and according temperatures of three glass materials
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Figure 1. Three-point bending set
up [3].
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Figure 2.
Phase-field plots of
dynamic fracture
model of glass
H-K9L.
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Figure 3. Jc value of glass H-K9L.

observations as given in the literature. The plot of J-integral values of one glass material at
different temperatures and strain rates is depicted in Fig. 3. A jump of the Jc value is found
near the glass transition temperature Tg region, which represents the crack resistance rise and
indicates the sensibility of glass fracture in manufacturing processes near Tg.
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Figure 4. Fracture stresses σc of glass HK9L comparison.

Further comparison is made by fracture stresses obtained from experiments and PFM in Fig. 4.
Similar tendency exists with higher σc at higher strain rate for both cases. Special attention
needs to be drawn by relating to the experimental data, in the temperature zone between 575
◦C and 600 ◦C. If we observe the curves backwards, when the temperature drops from 600 ◦C to
575 ◦C, in the σc curve from experiments, no great changes are noticed in the fracture stress;
however, the Jc curve shows a tremendous decline. This points out the fact that the fracture



resistance of the glass material drops rapidly during the cooling process when the temperature
is near the glass transition zone and makes this process step especially sensitive and has high
chances of glass fracture, even when the maximum fracture stress appears to be stable. This
conclusion shows the privilege of the J-integral approach from energy point of view in comparison
to experimental approach and gives good base to future process optimization.

Conclusions

In conclusion, this study presents a robust and comprehensive scheme for the modelling of glass
fracture, which can be implemented in usual finite element codes. The glass fracture behaviour
is proved to be strongly temperature and strain-rate dependent. The J-integral has been proved
to be an effective tool for fracture analysis of not only brittle materials but also materials with
ductility. The proposed phase-field model results in a good qualitative agreement with J-integral
results and experimental data, in which the increased strain rate plays a key role in the fracture
stress gain. The combined approaches can serve as a base for a new direction in future studies
and real applications in the field of glass fracture. An important conclusion from this study is
the locating of the fracture-sensitive region into the cooling process of glass moulding procedures,
which shows good value in industrial applications.

This work, however, remains to have improvement areas and extensions, such as the description
of viscoelastic fracture and the extension towards 3D problems. An outlook of this work could
be the testing and comparison of different phase-field parameters and evolution approaches to
better control the crack propagation. A close and continuous monitoring of the changes in the
crack edge profile along with different load in the experimental approach could also be beneficial
to improve accuracy. The implementation of a ductile phase-field dynamic fracture model for
glass material is our next intention.
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