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Micro Abstract
This talk presents an extension of Nitsche’s method to finite deformation thermo-mechanical contact
problems. Besides the coupling of temperature and stress response in the bulk continuum, special
focus is put on the consistent enforcement of all involved interface constraints: normal contact,
Coulomb’s law of friction, heat conduction across the interface and frictional work converted to
heat. A set of numerical examples will be presented demonstrating the accuracy of the presented method.
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Introduction

Despite having been an active field of research for many years, computational contact mechanics
remains challenging and various methods have been proposed to incorporate contact constraints
into finite element analysis. One main difficulty thereby stems from the inequality nature of
the contact constraints, both in normal direction (no penetration) and in tangential direction
(friction). In many technical applications, also thermal effects at the contact interface, i.e. heat
conduction and frictional heating, need to be accounted for. In this work, all interface effects of
thermo-mechanical contact will be treated using Nitsche’s method. Compared to other numerical
methods for contact problems, Nitsche’s method has the advantage that, as in penalty methods,
no additional unknowns are introduced. However, in stark contrast to penalty methods, Nitsche’s
method adds penalty terms consistently and therefore optimal convergence properties can be
achieved for finite penalty parameters.

1 Nitsche’s Method for Isothermal Finite Deformation Contact Mechanics

Originally introduced for the weak imposition of boundary conditions [6], a first application of
Nitsche’s method to contact mechanics was proposed in [7]. A mathematical analysis of the
small deformation case has been presented by Chouly et al., see e.g. [3] and extended to frictional
effects in [2]. A first extension to finite deformation hyperelasticity can be found in [5].

Figure 1. Notation of a two body contact problem.

Let us consider the contact problem of
two elastic bodies Ω(1) and Ω(2) with
finite deformations as depicted in Fig-
ure 1. The deformation of the bodies is
then governed by the balance equations,
which, in their strong form, read

∇X · (FS) + b̂0 = ρ0ü in Ω(i),

(FS)N = t̂0 on Γ(i)
σ ,

σn = t(i)c on Γ(i)
c ,

u = û on Γ(i)
u ,

(1)



with appropriate initial conditions and a hyperelastic constitutive law to determine the second
Piola–Kirchhoff stress from the right Cauchy–Green tensor C via S = ∂ψ/∂C. At the potential
contact boundary γc (in the deformed configuration), the balance of linear momentum yields

t
(1)
c =−t(2)

c . We decompose tc := t
(1)
c = σ(1)n into its normal part pn and the tangential traction

tτ . Then, the following inequalities enforce the non-penetration condition and Coulomb friction

gn ≥ 0, pn ≤ 0, pngn = 0 on γc , (2)

ffr := ‖tτ‖ − µ|pn| ≤ 0, ∆uτ + βtτ = 0, β ≥ 0, ffrβ = 0 on γc , (3)

where gn represents the normal gap and ∆uτ the relative tangential slip within a time-step.
These inequality constraints can be reformulated as equality conditions using complementarity
or constraint functions Cn and Cτ and two penalty parameters γn and γτ , see e.g. [5]:

Cn := pn −min[0, pn + γngn] = 0 , (4)

Cτ := tτ −min

(
1,
−µmin[0, pn + γngn]

‖tτ − γτ∆uτ‖

)
(tτ − γτ∆uτ ) = 0 . (5)

Nitsche’s method for contact problems can now be derived by transferring (1) to its variational
form and adding terms to impose (4) and (5) weakly. We obtain the method proposed in [5]:∫

Ω
δuρ0ü dΩ +

∫
Ω

(FS) : ∇Xδu, dΩ−
∫

Ω
b̂0δu dΩ−

∫
Γσ

(FS)N · δu dΓ−
∫
γ
(1)
c

tc · [[δu]] dγ

−
∫
γ
(1)
c

(Cnn+Cτ )[[δu]] dγ − θs
∫
γ
(1)
c

(Cnn+Cτ ) · Dtc[δu] dγ = 0 ∀δu , (6)

where Dtc[δu] denotes the directional derivative of tc in direction of δu and [[·]] = (·)(1) − (·)(2)

the jump across the contact interface. The first line therein represents the standard weak form
of the initial boundary value problem (1) and the second line consistently imposes the contact
constraints in a weak manner. For linearized kinematics, the frictionless case of this formulation
has been analyzed mathematically in [3] and including Tresca friction in [2]. Stability and
optimal convergence rates can be achieved if the penalty parameters are scaled correctly by the
mesh size h and the stiffness E of the bodies, i.e. γ{n,τ} = E

h γ{n,τ},0. The parameter θs allows to
switch between different variants of Nitsche’s method: θs = 1 gives a symmetric formulation,
θs = 0 requires less terms (especially avoids the linearized constitutive law Dtc[δu]) and θs = −1
yields a skew-symmetric formulation, which is shown to be stable for any penalty parameters
greater than zero, whereas θs = 1 and θs = 0 exhibit lower bounds for the penalty parameters.

2 Nitsche’s Method for Thermo-Mechanical Contact Problems

When extending Nitsche’s method from isothermal to thermo-mechanical contact problems,
the treatment of normal and frictional contact constraints presented in the previous section
remain virtually unchanged. Only some temperature dependencies might have to be added in
the hyperelastic constitutive relation and a potential temperature dependency of the coefficient
of friction. Since these extensions are rather straight-forward, this section will focus solely on
heat conduction within the two bodies and across the contact interface. The evolution of the
temperature T is derived from the balance of energy and, in its weak form, reads∫

Ω
δTρ0CvṪ dΩ +

∫
Ω
Q · ∇XδT dΩ−

∫
Ω

+R̂0δT dΩ−
∫

Γq

Q̂0δT dΓ

−
∫
γ
(1)
c

q(1)
c δT (1) − q(2)

c δT (2) dγ = 0 ∀δT ∈ VT ,

(7)

where Q = k0C
−1∇XT denotes the material heat flux according to Fourier’s law at finite

deformations. The contact heat fluxes q
(i)
c therein account for two effects: heat conduction across



the contact interface due to a temperature difference and frictional work Pτ = tτ ·∆uτ being
converted to heat:

q(1)
c = βcpn[[T ]]− δcPτ , q(2)

c = βcpn[[T ]]− (1− δc)Pτ . (8)

Two parameters βc and δc are introduced to control the heat conduction and distribution of
frictional work. The simplest way to include these thermal effects into the weak form (7) is to
directly substitute (8) into (7). A drawback of this approach arises, however, when βc becomes
large, i.e. there is little resistance to the heat conduction across the interface. In such cases, the
terms involving βc in the weak form become large (compared to the others) and therefore yield
an ill-conditioned system. To overcome this issue a Nitsche method is presented in the following
which is based on the idea of [4] to deal with general boundary conditions and extended in [1] to
interface conditions. Similar to the structural case, the thermal interface condition (8) is added
weakly to the variational form (7) by introducing a consistent penalty term with the penalty
parameter γϑ > 0:∫

Ω
δTρ0CvṪ dΩ +

∫
Ω
Q · ∇XδT dΩ−

∫
Ω
R̂0δT dΩ−

∫
Γq

Q̂0δT dΓ

−
∫
γ
(1)
c

βcpn
βcpn − γϑ

{qc(T )}1−δc [[δT ]] dγ +

∫
γ
(1)
c

γϑβcpn
βcpn − γϑ

[[T ]][[δT ]] dγ

+ θϑ

∫
γ
(1)
c

1

βcpn − γϑ
{qc(T )}1−δc {qc(δT )}1−δc dγ − θϑ

∫
γ
(1)
c

βcpn
βcpn − γϑ

[[T ]] {qc(δT )}1−δc dγ

−
∫
γ
(1)
c

Pτ {δT}δc dγ = 0 ∀δT ∈ VT ,

(9)

where q
(i)
c (T ) = − k

(i)
0

detF (i)∇xT
(i) · n denotes the spatial heat flux derived from Fourier’s law and

{·}w = w(·)(1) + (1− w)(·)(2) the weighted average across the contact interface. Consistency of
(9) with (7) can easily be proven by inserting (8) and some algebraic reformulations. Again,
stability and optimal convergence can be proven [4], if the penalty parameter is correctly scaled
with the mesh size h and the thermal conductivity k0, i.e. γϑ = k0

h γϑ,0. The parameter θϑ again
allows to switch between different variants. Analogous to the structural problem, θϑ = 1 yields
a symmetric system and θϑ = 0 involves less terms. Both those variants exhibit a lower bound
for the penalty parameter. Finally, θϑ = −1 yields a skew-symmetric Nitsche method stable for
any penalty parameter γϑ > 0. Unlike the substitution method described above, the Nitsche
method (9) remains well-conditioned, also in the limit cases βc → 0 and βc →∞.

3 Numerical Example

As numerical example, we demonstrate the convergence behavior of the proposed method within
a 2-dimensional setup, where a rectangular block (Ω(2)) is pressed against an initially circular arc
(Ω(1)). Figure 2(a) illustrates the boundary conditions as well as the deformed configuration and
temperature distribution at a steady-state. Using Q2 elements and uniform mesh refinement, an
exemplary convergence behavior of H1-semi-norms of displacements and temperatures on the
two sub-domains (compared to a numerical reference solution) is given in Figure 2(b). Here, the
symmetric Nitsche method has been used for both contact and heat conduction, i.e. θs=θϑ=1
with γn,0 =γϑ,0 =2. As usual in computational contact mechanics, convergence rates with uniform
mesh refinement are limited by the regularity of the solution rather than the approximation
order, such that the observed order O(h3/2) is considered optimal. Similar convergence behavior
is also observed for other combinations of the proposed methods.

4 Conclusions

This contribution presents the application of Nitsche’s method to finite deformation thermo-
mechanical contact. Therefore, the isothermal hyperelastic formulation proposed in [5] is



(a) Problem setup
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Figure 2. Thermo-mechanical contact – Exemplary solution for mesh size h = 1/8 and convergence behavior.

extended to thermo-elasticity and a temperature dependent friction coefficient. Moreover, heat
conduction across the contact interface as well as frictional heating is accounted for. The simple
substitution method for the thermal interface condition becomes ill-conditioned for low thermal
contact resistances, whereas the presented Nitsche’s method for the thermal interface effects
is well-conditioned over the entire range of interface parameters. Owing to the consistency of
the method, optimal convergence behavior of the finite deformation problem can be achieved.
Contrasting other variationally consistent discretization approaches for contact problems such as
the mortar method, Nitsche’s method does not require additional degrees of freedom (Lagrange
multipliers), but remains a purely primal formulation.
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