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Micro Abstract
Mortar formulations differ on the choice of shape functions for approximation of the contact pressure.
The shape functions can be identical to the standard, weighted standard, or the dual shape functions.
In this contribution, we will unify all the above choices by starting with a least-squares condition.
That is, the shape functions are constructed such that the smoothed contact pressure fits best to the
raw contact pressure. Various other choices are also compared and discussed.
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Introduction

This article presents a construction procedure for various shape functions that are used for
approximation of the contact pressure in mortar methods. Consider a pair of discretized slave
and master surfaces. A point x on the discretized slave surface Γs = ∪nel

e=1Γs
e can be interpolated

from nodal values xA by the standard shape function NA as x =
∑n

A=1NAxA,1 where n is the
total number of nodes of Γs. In mortar methods, the impenetration constraints are enforced in a
weak sense by the potential pA gnA = 0, where pA and gnA denote the weighted contact pressure
and normal contact gap collocated at node A, respectively [3]. Consider the penalty method, pA
and gnA can be defined by

pA := ε gnA =

∫
Γs
A

MA p dA , p := εgn , (1)

where Γs
A, ε, p, and gn denote the nodal support domain, the penalty parameter, the (point-wise)

raw contact pressure and normal gap, respectively; MA denotes the mortar shape function for the
mortar contact pressure, defined by p? := MA pA. It should be distinguished from the smoothed
contact pressure, defined by p̂ := NA pA. In the following, we present a least-squares approach
for the construction of MA.

1 Various shape functions for the contact pressure

1.1. Global least-squares shape function (M-GLS) In this approach, the shape function
MA is constructed such that the smoothed contact pressure fits best to the raw contact pressure.
This can be done by minimizing the global least-squares functional

ΠLS :=

∫
Γs

1

2
(p̂− p)2 dA . (2)

Here, the integration domain Γs can be in either the current configuration or a reference
configuration (e.g. the initial or the previous-load-step configuration). The later choice would
significantly simplify computation of MA. From δΠLS = 0 follows that

1In the following, the Einstein summation convention for indices (A, B, C, ..) is adopted unless otherwise stated



pA =

∫
Γs

[LAB]−1NB p dA , (3)

where LAB is a (symmetric) mass matrix defined by

LAB :=

∫
Γs

NANB dA . (4)

By comparing Eq. (3) with Eq. (1), we obtain

MA := NB [LBA]−1 . (5)

Since these mortar shape functions are derived from a global least squares approach, we denote
them M-GLS. These functions are plotted in Fig. 1a. Note that, LAB is a dense matrix and the
support area of MA spans the entire slave surface. Besides, MA does not satisfy partition of
unity (PU), i.e.

∑
AMA 6= 1. This issue will be addressed next.

a. Global least-squares (M-GLS) b. PU Global least-squares (M-GLS*)

c. Lumped least-squares (M-LmLS) d. PU lumped least-squares (M-LmLS*)

e. Local least-squares (M-LcLS) f. PU local least-squares (M-LcLS*)

Figure 1. Various mortar shape functions MA for one-dimensional quadratic NURBS.

1.2. Global least-squares with partition of unity (M-GLS*) In order to satisfy partition
of unity (PU), a normalization technique can be applied at the nodes as

MA := NB [LBC ]−1WCA , (6)



where WCA is computed from a lumped mass of LAB as

WCA := δCA

∫
Γs

N s
A dA , (no sum over A) . (7)

Here δ denotes the Kronecker delta function. The resulting shape function (6) is thus denoted
by M-GLS* and depicted in Fig. 1b.2 However, the area support of the nodes is the same as
M-GLS. Note that M-GLS* can alternatively be obtained by the so-called global biorthogonality
condition [2, 4].

1.3. Lumped least-squares (M-LmLS)

If the mass matrix [LAB] in M-GLS (5) is approximated by the lumped matrix (7), we obtain a
shape function MA that spans locally (element-wise) as

MA := NBW
−1
BA . (8)

It is thus referred to as M-LmLS shape function and plotted in Fig. 1c. Note that this shape
function is equivalent to the weighted standard shape function [1].

1.4. Lumped least-squares with partition of unity (M-LmLS*) Similarly, the nodal
normalization can be applied to M-LmLS shape function (8) to satisfy partition of unity. The
resulting shape function is thus denoted by M-LmLS*. In this case, MA becomes identical to
the standard shape function (see Fig. 1d), i.e.

MA := NA . (9)

This shape function has been considered in the mortar formulation of Puso and Laursen [3].

1.5. Local least-squares with partition of unity (M-LcLS*)

Now, instead of defining the least-squares functional globally as is done in Eq. (2), we can state
the least-squares condition over each FE element e separately,

Πe
LS :=

∫
Γs
e

1

2
(p̂− p)2 dAe ∀e = 1, ..., nel . (10)

In analogy to Eq. (5), we get

M e
A := NB [Le

BA]−1 , with Le
AB :=

∫
Γs
e

NANB dA . (11)

Next, an additional averaging technique is required for smoothing unequal p̂ at nodes. Using the
nodal normalization technique results in

MA := NB [Le
BC ]−1W e

CA , with W e
CA := δCA

∫
Γs
e

N s
A dA , (no sum over A) . (12)

Note, that W e
CA is defined locally and should not be confused with WCA defined globally in

Eq. (7). Since MA are derived from a local (i.e. elementwise) least squares approach and have the
PU property, we denote them M-LcLS*. By design, it has the same support as the standard shape
function array NA. However, MA may have strong discontinuities over the element boundaries
as shown in Fig. 1f. Like M-GLS, M-LcLS* shape function (12) can also be constructed from the
so-called biorthogonality condition, but now locally [4]. In this regard, M-LcLS* is also called
dual shape function.

1.6. Local least-squares without partition of unity (M-LcLS)

Applying the weighting scheme similar to M-LmLS (8) to M-LcLS* results in a so-called M-LcLS
without partition of unity as

MA := NB [Le
BC ]−1W e

CDW
−1
DA . (13)

It is plotted in Fig. 1e. A comparison of M-LcLS with its counterpart M-LcLS* will be discussed
in the following.

2where (*) indicates the version satisfying partition of unity



2 On choosing the shape functions for the contact pressure

Fig. 2 shows the contact pressures for the interpenetration of a rigid sphere and a flat sur-
face described by quadratic NURBS (without any contact enforcement). As shown, non-PU

Figure 2. Interpenetration of a sphere and a quadratic NURBS surface: smoothed contact pressures
p̂ := NA pA considering various shape functions MA (left). Corresponding mortar pressures p? := MA pA
without PU (middle) and with PU (right) shape functions. The raw pressure p (green line) is the same in all
figures.

shape functions (i.e. M-GLS, M-LmLS, and M-LcLS) yield higher mortar pressures than PU
counterparts. Therefore, using the non-PU shape functions for mortar methods would usually
require less value of the penalty parameter than the corresponding PU ones considering the
same penetration.

M-LmLS (likewise M-LmLS*) is simple but least accurate. Meanwhile, M-GLS appears to
provide the best fit of p̂ to p. The nodal support of MA, however, spans the whole contact
surface. In contrast, the local support can be obtained for M-LcLS, but its mortar pressure p?

may have strong discontinuities over element boundaries. Further, since M-LcLS is elementwise
constructed, the consistency treatment at the contact boundary may lead to ill-conditioning of
the system of equations when the contact boundary approaches element boundaries [2] . This
issue does not appear for shape functions that are based on a global least-squares approach (like
M-GLS and M-LmLS).

Conclusion

Various shape functions for the contact pressure for the mortar methods can be constructed
based on the least squares approach. With this, the shape functions that are employed by [3],
[1], and [2] can be identified as M-LmLS*, M-LmLS, and M-LcLS*, respectively. Main features
of different choices have been discussed.
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