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Micro Abstract
Usage of standard mass matrices together with implicit time integration leads to temporal oscillations
of contact forces and losses/gains of energy at each contact event. Redistribution of the mass from
nodes that are potentially coming into contact and removing the term corresponding to contact
forces from the predictor of the Newmark method alleviates both problems. In this contribution
a mass redistribution for solid isogeometric FE’s is presented and results of numerical tests are discussed.
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Introduction

Accurate numerical schemes for impact response is still a challenging and open problem and
area of active research. The main issues for implicit time integration schemes are large temporal
oscillation of contact forces and losses/gains of energy at each contact event (activation and
release from contact). The latter issue can be addressed with modification of the predictor in
the Newmark method as proposed in [5, 7]. The former issue can be efficiently resolved for
standard Lagrange elements by redistributing mass from contact surface to inner nodes [6] or for
thin-walled elements by redistributing mass in neutral line/surface [8,13]. Recently, spline-based
finite elements got substantial attention because of their superior approximation properties for
smooth problems and direct connection with data representation in CAD. Thus, the spline-based
approximation in the domain can be combined with modified Newmark time discretization and
mass modification techniques to get superior results for dynamic contact problems.

The goal of this contribution is to present a method for stabilization of contact forces in impact
problems based on singular mass matrices proposed in [9] and to quantify the grid dispersion
error introduced by the novel mass matrix.

1 Spatial and temporal discretization

1.1 Redistribution of mass from contact surface to inner nodes

The mass redistribution formulation should fullfil following conditions: zero mass at each
contact node, symmetry and positive semi-definiteness of the mass matrix, preservation of the
translational mass and mask of consistent mass, simplicity of construction. The motivation for
zero mass is reduction of differential index of the underlying semidiscrite differential-algebraic
equation system and improved stability of contact algorithm, see details in [6,8]. Non-symmetric
masses is difficult to explain physically and any negative eigenvalue of a mass matrix leads to an
unconditionally unstable solution. Keeping the translational mass is necessary for consistency
of the method. Finally, usage of the mask of the consistent mass for a modified mass does not
require any changes in sparse matrix management inside the code and simplicity of construction
keeps the computational cost low. The modified quadrature rule proposed in [6] satisfies these



Figure 1. Standard quadratic B-Splines for one element (left) and their modification due to a possible
contact at node 3 with γs = 0.5 (right). The lumped masses at the nodes are given by a size of solid circle
and a number above.

conditions only for bulk bodies and interpolatory shape functions, e.g. standard Lagrange. The
hybrid-mixed methods proposed [8,13] require that contact nodes possess displacement shape
functions being orthogonal to a constant velocity, i.e.

∫
Ω ρN · 1 dV = 0. The total positivity

property of B-Splines and its common extensions is not compatible with the orthogonality
condition. Thus, an alternative method for the B-Spline-based discretization is needed. Here, a
formulation proposed in [9, 11] is pursuit. The modified mass matrix is computed with modified
shape functions Nm with

Mm,cons =

∫
Ω
ρNT

mNm dV , Mm,lumped =

∫
Ω
ρNm dV . (1)

The modification of the shape function is done via redistribution of the shape function to
neigboring nodes. This redistribution is illustrated on the example of single quadratic element

N1(η) = (1− η)2, N1,m(η) = N1(η) + γsN3(η) (2)

N2(η) = (1− η2), N2,m(η) = N2(η) + (1− γs)N3(η), (3)

N3(η) = η2, N3,m(η) = 0, (4)

where a contact at the node associated with the shape function N3 is expected. The shape
functions are also shown on Figure 1. Such a redistribution preserves the trasnlational mass and
fulfills the rest of the conditions on the mass matrix. Equal redistribution with γs = 0.5 is used
for quadratic B-Spline/NURBS functions everywhere below.

External and internal forces (f ext, f int) are obtained with standard finite element procedure. The
point-to-segment contact formulation is used herein [9] which results in a contact residual f c.
Finally, we arrive to the semidiscrite equation of motion

MÜ = f ext − f int − f c, (5)

where M is some mass matrix, U is the displacement vector and (̈·) is second derivative in time.

1.2 Modified Newmark integration

In this subsection time integration schemes for regular and singular mass matrices are presented.
The former is the contact modified formulation of Kane et al. [7], which is shortly summarized
for regular mass matrix. The latter is adjustment of the same formulation of Kane et al. [7] to
singular mass matrices. For simplicity, a damping forces and corresponding terms are omitted.

The modified Newmark method is based on an additive split of the acceleration vector in contact
and non-contact parts

Ü = Üint + Üc, MÜint = f ext − f int, MÜc = −f c, (6)

denoted with (·)c and (·)int, respectively. The modified corrector treats the contact forces in
pure implicit manner

Un+1 = Ũn+1 + ∆t2βÜint
n+1 +

1

2
∆t2Üc

n+1, U̇n+1 = ˙̃Un+1 + ∆tγÜint
n+1 + ∆tÜc

n+1, (7)



with a corresponding modified predictor

Ũn+1 = Un + ∆tU̇n +
1

2
∆t2(1− 2β)Üint

n , ˙̃Un+1 = U̇n + ∆t(1− γ)Üint
n , (8)

where β and γ are parameters of Newmark method and ∆t is the time step. Substitution of the
corrector in the equilibrium yields the following implicit equation for β > 0

1

β∆t2
M
(
Un+1 − Ũn+1

)
= f ext

n+1 − f int
n+1 −

1

2β
f c
n+1 (9)

with a liniarization with respect to displacement Un+1(
1

β∆t2
M + KT +

1

2β
Kc

)
∆Un+1 = f ext

n+1 − f int
n+1 − fkin

n+1 −
1

2β
f c
n+1. (10)

Here, KT = df intn+1/dUn+1 is the tangent stiffness matrix, Kc = df cn+1/dUn+1 is the contact stiffness
and fkin

n+1 = MŨn+1/β∆t2 is the part of the residual due to the inertia forces. This time integration
is strictly dissipative for the regular mass matrices as proven in Kane et al. [7]. However, the
total loss of the total energy can be unacceptable as it shown in the example below.

In case of singular mass matrix with zero masses at contact nodes equation MÜc = −f c is
inconsistent because non-zero components of contact force vectors correspont to zero rows of the
mass matrix. Therefore a split of the global vectors in innner and contact nodes must be done
and different predictor and corrector formulas are valid for corresponding DOF’s. Subvectors
corresponding to inner and contact nodes are denoted by superscripts (.)i and (.)c, respectively.
Thus, the equilibrium equation for inner and contact nodes at time tn+1 reads

1

β∆t2
Mi
(
Ui
n+1 − Ũi

n+1

)
= f ext,i

n+1 − f int,i
n+1, (11)

0 = f ext,c
n+1 − f int,c

n+1 − f c
n+1. (12)

The liniarization of these equation can be performed as before.

2 Analytical grid dispersion analysis of Rayleigh-Lamb waves

Accuracy of a spatial semi-discretization for transient problems can be studied using the grid
dispersion analysis (GDA). This analysis provides relation between the frequency of discretized
propagating wave ωh and the wave vector k referred here as dispersion relation. The difference
between the discrete and a known analytical dispersion relations indicates the error of the spatial
discretization. GDA was initially applied to study accuracy of finite difference schemes, but it
was lately also used for standard and isogeometric finite elements in [10] and [3], respectively.
Here, GDA is performed for a thin plate that guides the Rayleigh-Lamb waves. Quadratic
B-Splines are used for discretization in thickness and length direction. Both consistent and
singular mass matrix presented above are considered.

Rayleigh-Lamb waves have complicated non-linear dispersion relation with multiple symmetric
and anti-symmetric branches [12]. Unfortunately, an explicit form for the dispersion relation
does not exist. Rayleigh-Lamb frequency equation is an implicit form of the dispersion relation
and it reads

tan(qh)

tan(ph)
= − 4k2pq

(p2 − q2)2
(sym. modes)

tan(qh)

tan(ph)
= −(p2 − q2)2

4k2pq
(anti-sym. modes), (13)

where 2h is the thickness of the plate, p2 = ω2/c2
L − k2 and q2 = ω2/c2

T − k2. Here, cT =√
E/(2ρ(1 + ν)) and cL =

√
E(1− ν)/(ρ(1 + ν)(1− 2ν)) are the transverse and the longitudinal

wave velocity, respectively. In addition, the wave vector k reduces to a wavenumber k = 2π/λ



along the only possible wave propagation direction, where λ is the wave length. The highest
importance for the impact problems of thin structures has A0, A1 and S0 branches. A0 and A1
branches correspond to bending and shear dominant branches of a Mindlin plate theory [12]
and S0 is the compressional wave. Accuracy of A0 and S0 at long wave approximation (Taylor
expansion k → 0) is studied below. These reference expressions are taken in a dimensionless
form from [1] w.r.t. dimensionless frequencies Ω = ωh/cT and wavenumber κ = hk

Ω2
S0 =

2

1− ν
κ2 − 2ν2

3(1− ν)3
κ4 +

2ν2(7ν2 + 10ν − 6)

45(1− ν)5
κ6 +O(κ8) (14)

Ω2
A0 =

2

3(1− ν)
κ4 +

2(7ν − 17)

45(1− ν)2
κ6 +O(κ8). (15)

All branches of the discrete dispersion relation are contained in a characteristic equation

C(κ,Ωh) = det
(
Kdyn(κ,Ωh)

)
= 0, (16)

built for a representative patch of the mesh shown on Figure 2. This characteristic equation
contains three symmetric and three asymmetric branches for consistent mass matrix and two
symmetric and two asymmetric branches singular mass matrix, which can be visualized using
numerical root finding, e.g. with help of computer algebra system Maple, see Figure 2. However,
direct computation of the order of accuracy from equation (16) using implicit function theorem
is troublesome. Here, we follow the method of power balance, see [1]. The analytical dispersion
relation for consistent mass matrix and quadratic IGA with three control points per thickness is
obtained as

ΩCMM,2
S0 =

2

1− ν
κ2 − 2ν2

3(1− ν)3
κ4 − 2ν6 − 18ν5 + ν4 + 10ν2 − 6ν + 1

45(1− ν)5(1− 2ν)
κ6 +O(κ8) (17)

ΩCMM,2
A0 =

2

3(1− ν)
κ4 +

2ν2 + 8ν − 29

45(1− ν)2
κ6 +O(κ8). (18)

The analytical dispersion relation for singular mass matrices and quadratic IGA with three
control points per thickness is obtained as

Ωsing,2
S0 =

2

1− ν
κ2 − 2(41ν2 − 10ν − 35)

45(1− ν)3
κ4 +O(κ6) (19)

Ωsing,2
A0 =

2

3(1− ν)
κ4 +

2ν2 − 16ν − 25

45(1− ν)2
κ6 +O(κ8). (20)

Comparison of the Taylor series for the dispersion (15) and (20) shows that the main term of
dispersion relation for the bending branch (A0) is preserved despite mass modification. The main
term of error in the branch (A0) is of 6th order for CMM (18) and for the singular mass (20).
The advantage of CMM over the singular mass shows only in the volumetric branch (S0) yielding
4th vs. 2nd order of accuracy

3 Numerical example

Consider a transient contact problem described on Figure 3. A quarter of an elastic thin
ring bounces onto a rigid planar frictionless obstacle. After several contacts events the ring
re-bounce keeping the total energy of the system. The initial velocity of the ring v0 = 0.5 m/s is
about 3.9 % of shear wave velocity. Therefore, substantial deformation of the ring is expected.
Moreover, the ring undergoes rotation of almost 90◦ due to the series of the impacts. The focus
of the benchmark is to check smoothness of the contact forces, energy preservation and general
robustness of the algorithm. Here, the results obtained with standard lumped mass are compared
with sigular mass matrix given in above.
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Figure 2. Setup for analytical dispersion analysis in a plate discretized with quadratic B-Spline shape
functions (left) and comparison of dispersion relations for CMM and singular mass matrix for aspect ratio
h/b = 2 (right). Results for singular mass are markes with ’s’.

v0 = 0.5 m/s

E = 20000 Pa

ν = 0.2

ρ = 100 kg/m
3 mesh 2× 16 elem.

∆t = 0.05 s

Rin = 4 m

Rout = 5 m

g0 = 2 m

rigid planar obstacle

contact at Greville absc.

plane stress

tend = 20 s

no body forces (gravity=0)

Figure 3. Setup for the transient benchmark.

Contact modified Newmark algorithm with constant time step 0.05 s and parameters β = 0.25 and
γ = 0.5 is used. The mesh is obtained from single quadratic NURBS patch via standard uniform
knot insertion algorithm. Elastic St.Venant-Kirchhoff material with plane stress assumption is
used. Contact is enforced with Lagrange multipliers method at Greville abscissa. Alternatively,
uniform, Botella [2] or Chebyshev-Demko [4] can be used, but the numerical evidences show no
advantages of using them in comparison with Greville abscissa [9].

The example is computed in in-house code NumPro, see details of the implementation in [9, 11].
The drop tolerance for the total residual is chosen to be 1.0 · 10−8. Full Gauss quadrature (3× 3)
is used for the internal force vector and mass matrix calculations.

The results of simulation are presented on Figure 4. The history of the contact force with
standard mass shows higher spikes and more oscillations. Combination of the modified Newmark
algorithm and lumped mass matrix yields reduction of the total energy by 9.5 % after re-bounce
whereas the same time integration with the singular mass yields energy reduction by 0.097 %.



Figure 4. Evolution of contact force and total energy with lumped mass matrix (above) and singular mass
matrix (below).

Conclusions

Singular mass matrices for isogeometric finite elements improve energy preservation and ro-
bustness of analysis of dynamic contact problems. The algorithm with mass redistribution
yields symmetric and positive semi-definite mass matrices that preserve translational mass of
structure, which are minimal conditions for consistency. The grid dispersion analysis of a thin
plate discretized with the modified mass shows that this mass redistribution does not significantly
affect the bending dominated branch. This explains why a transient benchmark with a ring
modeled with few isogeometric element in thickness and the singular mass shows high accuracy
of the solution.

The study here was limited to one value of the mass redistribution parameter γc = 0.5, constant
time step and bi-quadratic fully integrated B-Splines/NURBS elements. Further investigation of
the mass redistribution for different values of γc, bi-cubic B-Splines/NURBS and other integration
strategies can be done.
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