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Micro Abstract
The Single-Walled Carbon Nanotubes (SWNT) have unique properties that make them ideal for
nano-materials. We use efficient numerical methods to improve our understanding of the macroscale
assembly processes (e.g., fiber spinning). The Galerkin/Least-Squares formulation is derived for the
fully coupled transient equation systems. Space-time elements with equal order velocity-pressure-order
parameter are used for several relevant test cases. The results are compared with available literature
data.
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Introduction

Single-Walled Carbon Nanotubes (SWNTs) demonstrate unique properties at molecular scales [9],
which makes them ideal candidates for manufacturing multifunctional materials at macro-
scales [1–3]. The main difficulty in assembly processes is to produce macro-scale materials
that exhibit the same unique properties as the SWNTs. The fiber spinning process is a viable
production method that uses the SWNT solutions as liquid. In order to sustain the unique
properties at macro-scales, the fibers must be formed by long, highly aligned, and defect-free
arrangements of nanotubes [2]. SWNTs are considered as rigid rod-like polymers, and at high
concentrations, they form liquid crystals (nematic phase) that allow the fiber formation [6, 8].
The viscoelastic fluids are commonly modeled by constitutive equations that relate the stress
tensor and kinematic tensors (e.g., rate-of-strain tensor). The constitutive equations for mi-
crostructured liquids are derived from molecular and kinetic theories in order to retain the
micro-macro features of the flow. The dynamic behavior of rod-like molecules have been exten-
sively studied over the last decades [5, 7, 13]. Here [11] we use the constitutive model that was
developed for the liquid-crystalline polymers (LCPs). The model adds the long-range elasticity
(proposed by [12]) to the Doi theory [7]. The microstructured liquid model consists of mass,
momentum and constitutive equations in differential form. The momentum and constitutive
equations are fully coupled via the extra-stress equation. We solve the system of equations
using a parallel stabilized finite element method [4, 14]. The “order parameter-velocity-pressure”
Galerkin/Least-Squares formulation (GLS3) is derived for the space-time elements as well as for
the semi-discrete form. The nonlinear equations are solved iteratively by Newton-Raphson (NR)
scheme. The parallel implementation is purely via message-passing communication library, MPI.

1 Governing Equations

The governing equations for the microstructured liquids consist of momentum, continuity, and
constitutive equations. Additionally, an extra-stress equation is needed for fully coupling the
momentum and the constitutive equations. In the current study, we use the non-dimensional
form of the equations. The length and velocity are scaled by the characteristic length H and the



characteristic velocity V , respectively.

1.1 Flow equations

The transient incompressible Navier-Stokes fluid can be written as,

Re

(
∂u

∂t
+ u ·∇u

)
−∇ · σ = 0, (1)

∇ · u = 0, (2)

where Re is the Reynolds number, u is the velocity, and σ is the total stress tensor that is
defined as,

σ = −pδ + τ , (3)

where p is the pressure, δ is the unit tensor, and τ is the extra-stress tensor. The Reynolds
number Re is the ratio between the inertial forces and the other forces that is defined as,

Re =
ρV 2

ckBT
, (4)

where c is the number of entanglements per unit volume, and kBT is the Boltzmann’s constant
times the absolute temperature.

1.2 Constitutive equation

The constitutive equation for the microstructured liquids in nematic phase is written as,

∂S

∂t
+ u ·∇S = F h(S) + F nh(S) +G(S), (5)

F h(S) =
1

De

[
(3U − 4)S + 6US · S − 6U(S : S)

(
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2
δ

)]
, (6)

F nh(S) =
1

Er

{
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, (7)

G(S) =
1

2

(
κ+ κT

)
+ S · κT + κ · S − 2 (κ : S)

(
S +

1

2
δ

)
, (8)

κ = ω(u) + λε(u), (9)

where S is the (symmetric and traceless) order parameter tensor, ω is the vorticity tensor, ε is
the rate-of-strain tensor, and U is the nematic potential. The parameter λ,

λ = (r2 − 1)/(r2 + 1), (10)

is related to the tumbling period of the rod-like molecules, where r is the molecular aspect ratio.
The Deborah number,

De =
V/H

D̄R
, (11)

is the ratio of the molecular (relaxation) time scale 1/D̄R to the characteristic time scale of the
flow, where D̄R is a constant that averages the characteristic rotational diffusion coefficient DR.
The Ericksen number is the ratio of the viscous stress (short range nematic potential) and elastic
stress (long range Marrucci-Greco potential), which is written as,

Er =
8

U

(
H

R

)2

De, (12)

where R is the characteristic molecular interaction distance.
The inter-molecular kinetics, separated into homogeneous and non-homogeneous parts, are
collected in Eqs. (6) and (7), respectively. The molecular advection terms are collected in Eq. (8).



1.3 Extra-stress equation (coupling)

The momentum equation (1) is coupled to the constitutive equation (5) via the extra-stress
equation,

τ = −1

2
λDeF (S) +

1

2

De

Er

[
(∇2S) · S − S · (∇2S)

]
+ 2νsε(u), (13)

where the dimensionless parameter νs,

νs =
µs(V/H)

ckBT
, (14)

is the ratio of the solvent viscosity µs and the characteristic polymer viscosity. The second term
in Eq. (13) is the antisymmetric part of the stress tensor. The asymmetry implies that the
gradients in the orientation generate torques on the molecules.

2 GLS3 formulation

The weak form of the governing equations, (1), (2) and (5), for the linear space-time elements
with three unknowns S, u, and p can be written as,∫

Q
w · Re
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dQ−
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dQ = 0,

(15)

where C, w, and q are the weighting functions for the constitutive, momentum, and continuity
equations. The space-time slab Q and its boundary P support the basis functions that are
continuous in space and discontinuous in time. The 6th and 9th terms in Eq. (15) are the
jump terms that weakly impose the continuity of the variables in time. In Eq. (15), we use the
following conventions for the space-time elements:∫

Q
· · · dQ =

∫
t

∫
Ωt

· · · dΩdt, (16)∫
P
· · · dP =

∫
t

∫
Γt

· · · dΓdt. (17)

The higher-order derivatives (up to 3rd order) make it cumbersome to solve the Eq. (15). We
used two main approaches to handle this issue; 1) integration by parts, and 2) recovery of the
terms. Using the integration by parts approach, the higher-order derivatives on the shape (basis)
functions can be shifted to the weighting functions. The only consideration with this approach
is the additional integrals when the Neumann-type boundary condition is needed. The second
approach is to recover the higher-order derivatives by the polynomial field fitting. The fitting
algorithm affects the accuracy of the fitted field. The boundary nodes need special treatment
for accurate projection. Additionally, the convergence is degraded as a result of the missing
Jacobian matrix of the NR iterative scheme.
The sheer amount of terms with higher-order derivatives and nonlinearities necessitate the
development of software tools that generate the analytic Jacobian matrices for the NR scheme.



Figure 1. The shear flow schematic; the walls are located at y = 0, H.

3 Numerical example

The shear flow problem is defined in Fig. 1 following [11]. We use this test case to validate our
stabilized FEM implementation of the microstructured liquid model. The shear flow is assumed
between two parallel plates that move in opposite direction by speed V and separated by a
gap H. The flow is periodic in the x-direction. The test case is separated into three subsets;
homogenous model, decoupled model, and fully-coupled model. For all results that we report
here, we assume that the dimensionless viscosity parameter is zero, νs = 0. The initial value of
the order parameter is assumed to be the equilibrium value of the homogenous case, Seq. On
the wall boundaries, the S tensor is aligned with the x-axis (anchored) as,

S = Seq

[
1 0
0 −1

]
, (18)

where, Seq = 1
2

√
1− 4

3U .

3.1 Homogenous (point) model

In the homogenous case, the 2nd order derivatives (non-homogenous part F nh) are dropped from
the constitutive equation (5). The homogenous model simplifies to,

∂S

∂t
= F h(S) +G(S). (19)

The system is decoupled from the momentum equation (1), meaning that the velocity field u is
not influenced by the order parameter tensor S or vice versa. The assumptions are: ∂

∂x = 0,
∂v
∂y = 0, and ∂u

∂y = 2. The initial conditions are: Sxx = Sxy = 0. The results are shown in Fig. 2.

3.2 Decoupled model

Here, we solve the full model; the non-homogenous terms (the 2nd order derivatives) are included
in the constitutive equation (5). These terms add the long-range elasticity to the model, which
is controlled by the Ericksen number Er. This property enables the wall anchoring of S. In the
decoupled case, the velocity field u is not influenced by the order parameter tensor S, and vice
versa. The extra-stress equation (13) is dropped from the momentum equation (1).
The gap is H = 1. The boundary conditions are; the parallel plates move at speeds V = ±1,
and the order parameter tensor S is aligned with the plates (anchored to the walls). Initially,
the flow is fully developed with a constant shear rate of ∂u

∂y = 2, and the S is aligned with the
x-axis. The dimensionless parameters are chosen as: U = 10, De = 1, and Er = 100. The time
evolution of the order parameter tensor S are shown in Fig. 3.



Figure 2. Evolution of the order parameter tensor components for U = 10 and De = 1. These results match
those in [11].

3.3 Fully-coupled model

In the fully-coupled model, the extra-stress tensor τ couples the momentum equation (1) and the
constitutive equation (5). We apply the same initial and boundary conditions as in Section 3.2.
The dimensionless parameters are chosen as; U = 10, De = 0.1, and Er = 100. The stabilized
FEM results are given in Fig. 4.

Conclusions

The GLS3 formulation for the microstructured liquid model was derived in the context of stabilized
finite element methods for equal order space-time elements. The higher-order derivatives were
handled by the integration by parts and recovery approaches. The analytic Jacobian matrices of
the NR scheme were generated by in-house tools. The implementation was validated for various
literature data.
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Figure 4. The FEM results of the fully-coupled model for (a) Sxx, and (b) Vx. These results are nearly
identical to those in [11].


