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Micro Abstract
The inductive heating of a metal shaft is influenced by an alternating current inducing a high frequency
electromagnetic field, which causes a temperature increase due to the resulting eddy currents. To
examine this process, the fully coupled electromagnetic Maxwell equations are combined with heat
conduction. Due to the high frequencies of the applied current and the strongly temperature de-
pendent material parameters, high-order accurate numerical methods in space and time are investigated.
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1 Introduction

In order to achieve application-optimized material properties, new material composites or novel
fabrication sequences are developed. Thus, in the area of metal-forming processes, heating and
cooling strategies that locally influence workpiece characteristics such as ductility, hardness, yield
strength or impact resistance, are important concepts. The tailor-made combination of properties
has been realized in the past by a variety of different materials or extensive manufacturing
processes. For components made with just one metal, precisely defined properties can be obtained
in the following three stages, see Figure 1. In this integrated manufacturing process, a metal

Figure 1. Integrated thermomechanical forming process, cf. [9].

shaft obtains a heterogenous temperature distribution throughout a local inductive heating.
Then the heated metal shaft is formed in a press and simultaneously cooled due to the contact
with the die. Finally, the desired material properties are achieved by partial rapid cooling,
allowing the creation of graded materials with defined properties, cf. [9].

Furthermore the inductive heating process is examined to describe the temperature evolution due
to electromagnetical effects. The inductive heating of the shaft is influenced by an alternating
current inducing a high frequency electromagnetic field, which causes a temperature increase
due to the resulting eddy currents.
To analyze this process, the coupling between the electric and the magnetic field is described by
the fully coupled Maxwell equations [4,8]. Moreover the heat conduction equation is considered
to describe thermal effects. Since all material parameters are subjected to large changes due to
heating, the Maxwell equations and the heat conduction equation are strongly coupled.
In order to solve this coupled electromagnetic-thermo multifield problem the nonlinear heat
equation and the electromagnetic equations are formulated in a monolithic approach. In a further



step an axisymmetric case is considered, motivated by the fact that the inductive heating process
of a cylindrical shaft is analysed [1,2]. Since the problem is strongly time dependent a high order
accurate p-finite element method is applied. The resulting equations are spatially discretized by
the standard finite element method [10]. In analogy, the time integration is achieved with high
order Runge-Kutta methods [3, 5, 6].

2 Inductive Heating

The inductive heating process is characterized by the Maxwell equations and the heat conduc-
tion equation, taking into account nonlinear material effects due to temperature changes. In
the end this leads to a combination of the weak forms of electric, magnetic and thermal fields,
yielding a monolithic system of equations:

δWE =
∫
Ω

δE · ε Ë j dV +
∫
Ω

δE · σc(Θ) Ė j dV +
∫
Ω

δE · σ̇c(Θ) E dV +
∫
Ω

δE · κ̇(Θ) ∇×B dV

+
∫
Ω

κ(Θ) ∇× δE · ∇ ×E dV +
∫
Ω

∇κ(Θ)× δE · ∇ ×E dV +
∫
Ω

δE · ∇κ̇(Θ)×B dV

+
∫
Ω

δE · J̇ ji dV +
∫
Ω

∇ ·E κ(Θ) ∇ ·E dV −
∫
Ω

∇ ·E ρR
ε dV = 0

δWB =
∫
Ω

δB · ε B̈ j dV +
∫
Ω

∇× δB · κ(Θ) ∇×B dV +
∫
Ω

∇× δB · ∇κ(Θ)×B dV

−
∫
Ω

δB · ∇ × σc(Θ)E dV +
∫
Ω

∇ · δB κ(Θ) ∇ ·B dV −
∫
Ω

∇× δB J i dV = 0.

δWΘ =
∫
Ω

δΘ ρ cp(Θ) Θ̇ dV −
∫
Ω

∇δΘ · q(Θ) dV −
∫
Ω

δΘ Q dV

+
∫
Γq

δΘ
[
q? + α [Θ−Θ∞] + εΘ(Θ) σΘ A

[
Θ4 −Θ4

∞
]]
dA = 0.

(1)

Therein, the vectors E , Ė j and Ë j represent the electric field and their first and second time
derivative, the vectors B and B̈ j the magnetic field and the second time derivative and the
thermal field Θ with the first time derivative Θ̇. The material parameters and further variables
are the electric permittivity ε, the electric conductivity σc, the magnetic permeability µ with
κ = 1/µ, the electric charge ρR, the density ρ, the heat capacity cp, the heat flux vector q with
Fourier’s law q = −λΘ∇Θ, the thermal conductivity λΘ, thermal source term Q = J 2

i /σ(Θ),
the external flux vector q?, the heat transfer coefficient α, the bulk temperature Θ∞, the
emissivity εΘ and the Stefan-Boltzmann constant σΘ.

2.1 Thermal Material Characterization

Within the first step of the chain process of Figure 1 the steel is heated from room temperature
to about 1200K. Due to this large temperature range, the material properties change drastically.
To obtain the material properties as a function of the temperature, experimental tests were
performed at the Austrian foundry research institute (ÖGI). The resultant data is exploited to
generate phenomenological material models for the thermal conductivity λΘ(Θ), the heat capacity
cp(Θ), the emissivity εΘ(Θ), the electric conductivity σ(Θ) and the magnetic permeability µ(Θ),
cf. [5].

3 Spatial Discretization

To solve the inductive heating process, the next step is to discretize the weak forms (1) of the
electric, magnetic and thermal field spatially by using the finite element method. Standard
Lagrange shape functions are used which allow a general formulation with an arbitrary
polynomial degree p in each direction, cf. [5,10]. This nonlinear problem, due to the temperature
dependent material properties, is solved via a Newton-Raphson scheme. Hence, appropriate
linearizations have to be performed and evaluated. Thereby, the integration is carried out using



2.3 Temperature-Dependent Material Parameters
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Figure 2.1: Illustration of the experimental dataset of the heat capacity of the two test
specimens which were measured by the austrian foundry research institute
(left) and the mean of these datasets with the markers every fiftieth place for
the sake of clarity with a phenomenological constitutive model (right).

containing the abbreviations:

cp1(Θ) = α1e
α2Θ + α3Θ2 + α4Θ + α5

cp2(Θ) = α6e
−α7[Θ−Θ0] + α8[Θ−Θ0]2 + α9[Θ−Θ0] + α10.

(2.7)

The advantage of this function is the smooth transition of the two regions next to the peak.
To determine the material parameters in Table 2.1 an objective function is optimized using
the Nelder-Mead simplex algorithm with Matlab, cf. [195, 235]. Hence, the following
parameters in Table 2.1 are obtained.

2.3.2 Thermal Conductivity

To determine the thermal conductivity λ of the examined steel, a differential scanning
calorimetry (DSC), a laser flash apparatus (LFA) and a heat dilatometer from the austrian
foundry research institute (ÖGI) are used. The experimental setup is characterized by an
indirect procedure since the thermal conductivity is obtained with the help of equation
(2.8) by the density ρ, heat capacity cp and thermal diffusivity aλ, cf. [249].

λ(Θ) = ρ(Θ)cp(Θ)αλ(Θ) (2.8)

Consequently, the heat capacity is investigated like explained in section 2.3.1. The thermal
diffusivity is obtained using the LFA, cf [239]. Therein, a cylindrical sample is heated to
a predetermined temperature in a sealed furnace under an inert gas. Afterwards, the
specimen is irradiated at the bottom by a short laser pulse. The infrared detector, which
is above the sample, measures the relative temperature increase depending on the time at
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2 Heat Evolution: Fundamental Equations and Formulations

0 200 400 600 800 1000
25

30

35

40

45

50

temperature [◦C]

λ
[W

/m
K

]

sample 1
sample 2

0 200 400 600 800 1000
25

30

35

40

45

50

temperature [◦C]

λ
[W

/m
K

]

Figure 2.4: Illustration of the experimental dataset of the thermal conductivity of the two
test specimens which were measured by the austrian foundry research institute
(left) and the mean of these datasets with a phenomenological constitutive
model (2.10) (right).

2.3.3 Emissivity

Not every matter corresponds to the ideal of the black body. Normally a body does not
absorb all the radiation like a black body and does not emit the maximum radiation. A
body with lower emissivity is often referred to as a gray body, cf. [169]. The emissivity
is the ratio of the real radiation from the material that is examined and the radiation of
the black body. As mentioned above, the maximum values of the emissivity are 0 (mirror)
and 1 (black body). In general, the degree of emission ε, reflexion ϕ and transmission τ
must be equal to one.

ε+ ϕ+ τ = 1 (2.11)

Since most bodies like the steel in this experiment have no transmission, the formula
simplifies to

ε+ ϕ = 1. (2.12)

This relation is particularly useful since it is easier to measure the reflection as to deter-
mine the emissivity. The experimental determination of the emissivity of the sample must
be carried out in an evacuated chamber or a filled chamber with an inert gas. This is
necessary in order to obtain no surface changes due to oxidation of the steel with air. The
sample is inductively heated to a predefined temperature and monitored with a infrared
detector. The emitted radiation is measured at the top of the chamber with a radiation
detector. The emissivity is obtained in a post processing step, where the results of the
steel are compared to those of a black body. This series of experiments were carried out by
the institute of nuclear technology and energy systems (IKE). The exact implementation
of the experimental studies can be read in [256] and [257]. Figure 2.5 (left) demonstrates
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2.4 Initial, Boundary and Interface Conditions

that the emissivity has a similar abrupt change like the heat capacity. Therefore, equation
(2.6) is reformulated to yield the phenomenological material model for the emissivity

ε(Θ) = −ĉ ln

[
e−ε1(Θ)/ĉ + e−ε2(Θ)/ĉ

2

]
(2.13)

with the abbreviations:

ε1(Θ) = ι1e
ι2Θ + ι3Θ2 + ι4Θ + ι5

ε2(Θ) = ι6e
−ι7[Θ−Θ0] + ι8[Θ− Θ̂0]2 + ι9[Θ−Θ0] + ι10.

(2.14)

The parameter identification was achieved like before for the other phenomenological
models by finding the minimum of the objective function with the Nelder-Mead simplex
algorithm, see Table 2.3.
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Figure 2.5: Illustration of the experimental dataset of the emissivity which were measured
by the institute of nuclear technology and energy systems (left) and the mean
of this dataset with the markers and with a phenomenological constitutive
model (right).

2.4 Initial, Boundary and Interface Conditions

The partial differential equation of the temperature domain Ω is described by equation
(2.1) with the field variable Θ and its first time derivative Θ̇. To complete the initial
boundary value problem of the heat conduction equation, boundary and initial conditions
need to be introduced. In summary, the dependencies of the initial boundary value problem
are depicted in a Tonti diagram in Figure 2.6. The boundary of the domain can be split
up in a Dirichlet ΓΘ and Neumann Γq part so that the restrictions Γ = ΓΘ ∪ Γq

and ΓΘ ∩ Γq = ∅ have to hold. If the heat conduction problem is characterized by the
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4 Inductive Heating: Fundamental Equations and Formulations
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Figure 4.1: Graph of the data points of the relative magnetic permeability from the lit-
erature [214] and the phenomenological constitutive model for the relative
magnetic permeability, see Table 4.1.

function domain

7.28× 10−9 Θ3 − 2.58× 10−4 Θ2 − 1.98× 10−2 Θ + 607.2 0 ≤ Θ ≤ 127
4.06× 10−7 Θ3 − 4.94× 10−4 Θ2 − 15.74× 10−2 Θ + 605.26 127 ≤ Θ ≤ 327
−2.38× 10−6 Θ3 + 25.94× 10−4 Θ2 − 1.28 Θ + 740.05 327 ≤ Θ ≤ 527
−13.39× 10−6 Θ3 + 22.39× 10−3 Θ2 − 12.98 Θ + 3016.36 527 ≤ Θ ≤ 727

9.19× 10−4 Θ3 − 2.12 Θ2 + 1622.88 Θ − 4.12× 105 727 ≤ Θ ≤ 779.83

Table 4.1: Phenomenological material model of the magnetic permeability.

vibrations of the charge carriers, which in turn, depend on the temperature. The higher the
temperature gets in a metallic material, the more difficult it is for a current pass through
it. To measure the electrical conductivity σ, a thin long cylinder is placed in a measuring
device, cf. [233]. This cylinder is installed in a vacuum container, wherein the power supply
and the heating elements are connected to the left and right ends of the cylinder. In the
inner region of the cylinder, two thermocouples are attached with a specified distance
L from each other. These thermocouples can measure both the temperature Θ, and the
applied voltage U . Thus institutes like the ÖGI can determine the electrical resistance
ρσ indirectly. Using the known applied current J , the cross section A of the cylinder,
the distance between the thermocouples L and the measured voltage drop U across the
thermocouples, the electrical resistance can be determined with the formula:

ρσ(Θ) =
U(Θ)A

‖J‖L . (4.10)

During the measurements the sample is heated in a stepwise manner, so that the electrical
resistance can be determined as a function of the temperature. The required electrical
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4.4 Merging the Coupled Equations
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Figure 4.2: Illustration of the experimental dataset of the electrical conductivity of the test
specimen which were measured by the austrian foundry research institute and
a phenomenological constitutive model for the electrical conductivity (4.12).

For the identified electric conductivity a cubic function as phenomenological constitutive
model is selected:

σ(Θ) = ζ1[Θ]3 + ζ2[Θ]2 + ζ3Θ + ζ4. (4.12)

The parameter identification is carried out as described in section 2.3.1 with the help
of the Nelder-Mead simplex algorithm and the help of Matlab, see Figure 4.2. The
parameters are determined as follows, see Table 4.12.

parameter
ζ1 − 0.0029851
ζ2 9.2987442
ζ3 − 1.0075463 · 104

ζ4 4.5829683 · 106

Table 4.2: Choice of parameters for the phenomenological material model of the electric
conductivity (4.12).

4.4 Merging the Coupled Equations

For a better overview in the following section the dependences of all field varaibles on the
spatial coordinates and the time are omitted. The strategy of Demkowicz and Assous,
cf. [85, 9] is also applied in the thermo-electromagnetic case with non-linear material
parameters, see section 3.4. For this purpose, the constitutive laws (4.7)-(4.9) are inserted
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Figure 2. Temperature-dependent material parameters: a) specific heat capacity, b) thermal conductivity, c)
emissivity, d) magnetic permeability and e) electric conductivity. Points are experimental data and lines are
the courses of the associated phenomenological material models.

the Gauss-Legendre quadrature. Finally, a general semi-discrete system of linear equations is
obtained:

Mt ·∆ü + Dt ·∆u̇ + Kt ·∆u = r− rint. (2)

The matrices Mt, Dt as well as Kt are the linearizations of the weak forms, here denoted as inner
rint and outer r flux vector, with respect to the second, first and zeroth order time derivative of
the primary variable vector u. Therein, the vector u = [E,B,Θ]T of primary variables for the
inductive heating process is introduced together with its time derivatives to obtain an abridged
form. The variable ∆u and its time derivatives are the increments of the primary variable u
and its time derivatives, obtained through the linearization with proper Gâteaux derivatives.

4 Temporal Discretization

In order to be able to solve the ordinary system of equations (3), a temporal discretization
has to be carried out. Therefore, classical stiffly accurate diagonal implicit Runge-Kutta
schemes will be applied, cf. [3,7]. In this type of Runge-Kutta methods, the primary variables
and the increments are solved at the points in time tni = tn + ∆t ci, the so-called stages s.
The approximation of the variables and increments is done using special quadrature rules and
weighting factors aij , cf. [3, 6]. Since for the studies in this paper stiffly accurate diagonal
Runge-Kutta methods are used and thereby the last stage tns = tn+1 is the solution at the
end of the time step, the external integration with the bj-factors is not required. By evaluating
the semi-discrete balance equation with the Runge-Kutta approximations, equation (3) can
be reformulated as follows:[

Mt
1

[∆t aii]
2 + Dt

1
[∆t aii]

+ Kt

]
∆uni = r− rint. (3)

The parameters ci, aij and bj can be determined using Butcher-tableaus, cf. [3, 6].

5 Simulation of a Steel Shaft

As a numerical example for the above deduced theory, the inductive heating process of a 51CRV4
shaft will be examined in an axisymmetric case, see Figure 3. The present example is used
to study the h-error and the embedded error for the stiffly accurate diagonal Runge-Kutta
methods with respect to the accuracy. Three different Butcher-tableaus with different time step
sizes are investigated, cf. [5]. If the error curves, see Figure 4 left, of all methods are summarized
for each time step size, it is possible to determine the corresponding order of convergence, see
Figure 4 right. The example obtains for the implicit Euler method a global order of convergence
of the h-error of O ≈ ∆t1, see Figure 4. The two- and three-stage stiffly accurate diagonal
Runge-Kutta method lead to a higher global order of O ≈ ∆t2 and O ≈ ∆t3, respectively.
The order of accuracy of the embedded error of the two- and three-stage method is as stated
in the literature an order less than the order of accuracy of the h-error, and that is what is
demonstrated in Figure 4 right, cf. [3, 6].
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6 Simulation of a steel shaft’s inductive heating process

As a numerical example for the above deduced theory the inductive heating process of a
51CRV4 shaft, see Figure 5, with three rings as induction coil will be examined. There-
fore, a sinusoidal current with an amplitude I = 355 A and a frequency f = 8100 Hz will
be applied to each of the induction rings. Due to the changing current, the evolution of the
electric, magnetic and thermal field is calculated. The present example is used to study the
GALERKIN time integration scheme with respect to robustness and order of accuracy. The
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Fig. 5 Axisymmetric depiction of the shaft (left), dimensions of the model (middle) and DIRICHLET
boundaṙy conditions (right)

necessary material parameters and load factors are listed in Table 1. The magnetic perme-
ability, the heat capacity and the thermal conductivity of the steel 51CrV4 were determined
in different experiments depending on the temperature, see Fig. 6 and [21]. All other mate-
rial parameters for the steel, the copper coil and the air are assumed to be constant. Since
the steel undergoes a phase transformation between 700◦C and 800◦C, the heat capacity’s
graph shows a peak and the magnetic permeability decreases to the value µR = 1 A/Vm.

Table 1 Materialparameters and loads

Material µR [Vs/Am] εR [As/Vm] σ [A/Vm] cp [J / K] λ [W/mK] ρ [kg/m3] ν [-]

Steel Fig. 6 0 5× 106 Fig. 6 Fig. 6 7836 Fig. 6

Air 1 1 0 1005 0.0262 1 -

Coil 1 0 5× 106 385 401 8920 -

In first preliminary investigations to determine the size effect of the considered domain, the
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Material µR [Vs/Am] εR [As/Vm] σ [A/Vm] cp [J / K] λ [W/mK] ρ [kg/m3] ν [-]

Steel Fig. 6 0 5× 106 Fig. 6 Fig. 6 7836 Fig. 6

Air 1 1 0 1005 0.0262 1 -

Coil 1 0 5× 106 385 401 8920 -

In first preliminary investigations to determine the size effect of the considered domain, the

Material Steel Air Coil

µR[Vs/Am] Fig.2 1 1

εR[As/Vm] 0 1 0

σc[A/Vm] Fig.2 0 5 · 106

cp[J/kgK] Fig.2 1005 385

λΘ[W/mK] Fig.2 0.0262 401

ρ[kg/m3] 7836 1 8920

εΘ[−] Fig.2 − −
Ji[A] 0 0 355

f [Hz] 0 0 8100

Figure 3. Axisymmetric depiction of the steel shaft for the inductive heating process with dimensions (left),
boundary conditions (middle) and the material parameters and load (right).

8 Simulation of Inductive Heating
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Figure 8.38: h-error of all fields added together and plotted over time for the time step
sizes ∆t = 50µs,∆t = 10µs, ∆t = 1µs and ∆t = 0.1µs with the Newmark-
α method.
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Figure 8.39: h-error of all fields added together and plotted over time for the time step
sizes ∆t = 50µs,∆t = 10µs, ∆t = 1µs and ∆t = 0.1µs with the DIRK(2)
(left) and DIRK(3) (right) methods.

the same time step size with an increase of the temporal polynomial degree.

The residual error in Figure 8.42, as in the previous examples also, displays the same
behavior for the time step size, the polynomial degree and the error. The residual error
itself fluctuates more than the h-error for each time step size. In addition, the residual
error has a higher error level for each time increment than the h-error. The residual error
of both polynomial degrees represented indicates a similar error level for the largest time
increment, which, however, decreases by different amounts with a reduction in the time
step size. The residual error estimator is an efficient criterion for an adaptive time step
control mechanism, as well as the embedded error for the Runge-Kutta methods, due
to the small amount of calculation required.

By bringing together the mean of the respective local error curves of all time step sizes, as
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Figure 8.40: Embedded error of all fields added together and plotted over time for the
time step sizes ∆t = 50µs,∆t = 10µs, ∆t = 1µs and ∆t = 0.1µs with
DIRK(2) (left) and DIRK(3) (right) methods.
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Figure 8.41: h-error of all fields added together and plotted over time for the time step
sizes ∆t = 50µs,∆t = 10µs, ∆t = 5µs and ∆t = 1µs with the dG(2) (left)
and dG(3) (right) methods.

in the previous examples, the local order of convergence of all time integration schemes can
be determined in a double logarithmic graph, see Figure 8.43. As expected, the generalized
Newmark-α method in Figure 8.43 (left), shows a local order of convergence of O(∆t3).
The diagonally implicit Runge-Kutta methods also demonstrate a nearly identical order
of convergence to the previous examples. The implicit Euler method, the DIRK(2) and
DIRK(3) methods provide the respective local orders of convergence of O(∆t2), O(∆t3)
andO(∆t4). The discontinuous Galerkin methods with the polynomial degrees pt = 2 to
4 demonstrate respective orders of convergence of O(∆t4.75), O(∆t5.92) and O(∆t8.01).

Figure 8.44 displays the respective local orders of convergence for the special error es-
timators of the diagonally implicit Runge-Kutta methods and of the discontinuous
Galerkin method. The order of convergence of the DIRK(2) and DIRK(3) methods is
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Figure 4. Plot of the error curves for a two stage Runge-Kutta scheme (left) and order of accuracy (right)
for the local h-error and local embedded error for different Runge-Kutta schemes.
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