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Micro Abstract
Micro electro-mechanical systems (MEMS) exploit the coupling between mechanics and electromag-
netism. For an accurate simulation of this coupling we need a strategy to calculate deformation,
temperature, and electromagnetic fields in solids, at once. By using open-source packages, we present
an approach to simulate MEMS by solving nonlinear and coupled equations at once by using finite
difference method in time and finite element method in space.
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Introduction

Micro-electro-mechanical systems (MEMS) exploit the electromagnetic interaction with elastic
materials such that a deformation induces a voltage change or a magnetic field generates a
deformation. A growing use is observed of such transducers transforming electromagnetic and
mechanical energies into each other. The increasing number of applications is not only owing
to quick and economic manufacturing possibilities but also because of the simulation methods
allowing to reduce or even eliminate the testing period before mass production. Simulation of
electromagnetism and thermomechanics, namely solving multiphysics, with the aid of commercial
programs is possible by solving electromagnetism and thermomechanics separately. In other
words the interaction between them is weakly introduced for enabling a computation. We want
to present very briefly the method in [1, Chap. 3] solving all fields at once by incorporating the
interaction accurately.

1 Weak form for multiphysics

The objective is to compute the temperature T in K(elvin), the displacement ui in m(eter), the
electric potential φ in V(olt), and the magnetic potential Ai in T(esla)m as functions in space xi
and time t. We neglect geometric nonlinearities such that xi indicates the particle. The unknown
fields {T, ui, φ,Ai} are expressed in Cartesian coordinates, we use summation convention over
repeated indices, and ,i is used for partial derivative in xi. For details of deriving the weak form,
we refer to [2]. Basically, we use a governing equation for all fields: for the temperature by
means of the balance of entropy, for the displacement with the balance of (linear) momentum,
as follows
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where the mass density ρ, the heat supply r, and the body force fi are known; the free charge
potential Di, the free current potential Hi, and Maxwell’s stress read

mji = −1

2
δji(HkBk +DkEk) +HiBj +DjEi , Di = Di + Pi , Hi = Hi −Mi , (2)

with the Maxwell–Lorentz aether relations: Di = ε0Ei and Hi = µ−1
0 Bi. We need consti-

tutive relations for the specific entropy η, for the entropy flux Φi, for the entropy production



Σ, for Cauchy’s stress σij , for electric polarization Pi, and for magnetic polarization Mi.
Electromagnetic potentials are introduced,

Ei = −φ,i −
∂Ai
∂t

, Bi = εijkAk,j , (3)

by fulfilling two of four Maxwell equations motivated by the Faraday law. The other two of
four Maxwell equations are used in combination with the Lorenz gauge in order to obtain
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which are utilized to compute the electromagnetic potentials, φ, Ai, respectively. For the free
electric current J fr.

i , we need a constitutive equation. By using the usual strategy of generating a
residual from Eqs. (1), (4) by subtracting right side from the left side, multiplying the residual
by an arbitrary test function of the same rank as residual, integrating by parts the terms already
possessing a derivative of unknowns, we acquire the weak form F = Fφ + FA + Fu + FT with
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discretely in time with ∆t being the time step and (·)0 denoting the numerical value computed
at the last instant, after implementing the balance equations on singular surfaces in order to
incorporate the jump terms on interfaces ∂ΩI with its outward normal Ni between different
materials, see [2, Sect. 4]. We also incorporated the so-called Neumann boundaries ∂ΩN for
implementing the given traction stress t̂i in the following application.

2 Constitutive relations for an elastic, piezoelectric, linear material

Consider a linear, piezoelectric but non-magnetized, Mi = 0, material with the following
constitutive equations for reversible processes obtained by a thermodynamical analysis

η = c ln
( T

Tref.

)
+ vCijklαklεij − vT̃ijkαjkEi , σtot.

ij = σij +mij = σ̄ij + τij ,

σ̄ij = −Cijklαkl(T − Tref.) , τij = mij + PiEj + Cijklεkl − T̃kijEk ,
Pi = −T̃ijkαjk(T − Tref.) + T̃ijkεjk + ε0χ

el.
ijEj ,

(6)

where v = ρ−1 and the material constants: stiffness tensor Cijkl, thermal expansion coefficients
αij , piezoelectric tensor T̃ijk = Cjklmd̃ilm given by the piezoelectric coefficients d̃ijk, electric



susceptibility χel.
ij are determined by experiments. They are all constants, otherwise the above

equations would be incorrect. In other words, we neglect hyperelasticity and electrostriction.
Moreover, by neglecting irreversible deformation (neither viscoelasticity nor plasticity exists)
and irreversible polarization (no hysteresis), we obtain
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(7)

with the material parameter: thermal conductivity κ, electrical conductivity ς, and thermoelectric
constant π. For simplicity we assume that these material parameters are constant. For detailed
discussion and derivation of these constitutive relations, we refer to [1, Chap. 3].

3 Simulation of a piezoelectric pressure sensor

A thin metal membrane disk bends under a dynamic pressure. A piezoelectric thicker disk is
attached on its bottom side to the membrane and it is clamped on its upper side as shown
in Figure 1. Deformation of the piezoelectric disk is measured as a voltage drop, which, after
calibrating with a known pressure change, measures the dynamic pressure. Such a sensor is used
to measure the dynamic pressure in engine combustion and ballistic. Due to the voltage leak in
connectors, a static pressure is difficult with this sensor. We model part of the case as steel and
the piezoelectric disk as a PZT-5H ceramic with the materials data compiled in Table 1. The

Table 1. Material constants used in the simulation for the stainless steel as the case, PZT-5H as the
piezoelectric disk, and the surrounding air

Steel PZT-5H Air

Mass density ρ in kg/m3 8500 7500 1.2

Compliance
S33 in m2/N 4.8 · 10−12 20 · 10−12 1

S11 in m2/N 4.8 · 10−12 15.6 · 10−12 1

Poisson’s ratio ν 0.31 0.31 0

Piezoelectric constants

d̃33 in m/V 0 585 · 10−12 0

d̃31 in m/V 0 −265 · 10−12 0

d̃15 in m/V 0 730 · 10−12 0

Dielectric constants
ε̄el.33 1 3400 1

ε̄el.11 1 3130 1

Specific heat capacity c in J/(kg K) 390 350 0

Coefficients of thermal expansion
α33 in K−1 12 · 10−6 −4 · 10−6 3.43 · 10−3

α11 in K−1 12 · 10−6 6 · 10−6 3.43 · 10−3

Thermal conductivity κ in W/(m K) 16 1.1 2.6 · 10−2

Thermoelectric constant π in V/K 60 · 10−6 0 0

Electric conductivity ς in S/m 106 0 0

compliance matrix, SIJ , in Voigt’s notation,

SIJ =



S11 −νS11 −νS11 0 0 0
−νS11 S11 −νS11 0 0 0
−νS11 −νS11 S33 0 0 0

0 0 0 (1 + ν)S11 0 0
0 0 0 0 (1 + ν)S11 0
0 0 0 0 0 (1 + ν)S11

 , (8)



is the inverse of the stiffness matrix in Voigt’s notation such that we obtain CIJ = (SJI)
−1.

Analogously, we have the piezoelectric constants, d̃iJ , where Voigt’s notation is applied on the
indices belonging to the strain,

d̃iJ =

d̃111 d̃122 d̃133 d̃123 d̃131 d̃112

d̃211 d̃222 d̃233 d̃223 d̃231 d̃212

d̃311 d̃322 d̃333 d̃323 d̃331 d̃312

 =

 0 0 0 0 d̃15 0

0 0 0 d̃15 0 0

d̃31 d̃31 d̃33 0 0 0

 . (9)

The susceptibility is given by the relative permittivity values:

χel.
ij =

ε̄el.11 0 0
0 ε̄el.11 0
0 0 ε̄el.33

− δij . (10)

We code in Python and use FEniCS [3] for solving the system of equations. In Figure 1 the
input pressure and the system response is seen. The real outcome is more than visualized, we
acquire 3D deformation, temperature, and electromagnetic fields.
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Figure 1. Left: CAD geometry of a stainless steel case with a thin membrane (gray) and an attached
piezoelectric disk (red), embedded in air (transparent gray). Right: Input and output of this system as a
transient solution of the coupled and nonlinear weak form.

Conclusions

We have applied a solution strategy for MEMS, where all thermodynamical fields are solved at
once. This strategy is indeed important for a coupled system, especially in MEMS the coupling is
the key of the mechanism such that we need to simulate a system with the highest precision in the
coupling terms. Moreover, the system is nonlinear—caused by the entropy production. Therefore,
we omit a method based on splitting and solving the equations subsequently. Instead, we use
the novel open-source packages developed under the FEniCS project and solve all equations
together. A common example from the industry, a dynamical piezoelectric pressure sensor is
presented in order to uncover the versatility of the proposed solution strategy.
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