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Micro Abstract
An approach for controlling the macro-step size in connection with explicit co-simulation methods is
suggested. The method is tailored for applied-force coupling techniques. Each macro-time step is
carried out with two different explicit co-simulation methods. By comparing the variables of both
results, an error estimator for the local error can be constructed. A step-size controller for the
macro-step size can be implemented. Examples are presented demonstrating the applicability and
accuracy.
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Introduction

The general idea of co-simulation is to separate a system of differential-algebraic equations
into several subsystems. The subsystems are integrated in parallel and can be computed more
efficiently than the overall system, since the numerical effort for time integration grows with the
number of state variables. The subsystems can be computed with tailored subsystem solvers
so that the efficiency may be further improved. Co-simulation methods are distinguished with
respect to the coupling technique. Applying a constraint coupling approach, the subsystems
are coupled by algebraic constraint equations. Using an applied force-coupling approach, the
subsystems are coupled by constitutive laws [1]. This manuscript concentrates on applied-force
coupling techniques.

A multibody system, described by the equations of motion B(t, z) ż = F(t, z), is considered here,
where the vector z contains the position variables q (displacements and rotation parameters),
the velocity variables v, and the Lagrange multipliers λ. Applying a co-simulation approach, a
macro-time grid T0, . . . , TN , . . . , Tend has to be introduced. The overall system is partitioned
into several subsystems. Using an applied-force coupling approach, the vector z is decomposed

into the vectors
[
z1, . . . , zr

]T
, where zs =

[
qs,vs,λs

]T
contains the variables of subsystem s.

We assume that the matrix B(t, z) is block diagonal. More precisely, there is one block for
each subsystem, which is independent of the variables of the other subsystems, i.e. B(t, z) =

blockdiag
(
B1
(
t, z1

)
, . . . ,Br(t, zr)

)
. With F(t, z) =

[
F1(t, z) , . . . ,Fr(t, z)

]T
, the equations of

motion of subsystem s read as Bs(t, zs) żs = Fs(t, z) for s = 1, . . . , r. A vector of coupling
variables u(t, z) is introduced, which are defined in such a way that the right hand side of each
subsystem only depends on the state variables of this subsystem and the coupling variables, i.e.
it can be written as Fs(t, z) = F̃s(t, zs,u(t, z)). Interpolating the coupling variables between
two consecutive macro-time points TN and TN+1 by a vector of polynomials p(t), the equations
of motion of the subsystems can be expressed as Bs(t, zs) żs = F̃s(t, zs,p(t)) for s = 1, . . . , r.
The subsystems are coupled by the coupling conditions gco(TN , zN ,pN ) := pN −u(TN , zN ) = 0.
The coupling conditions are not taken into account between the macro-time points. From
TN to TN+1 the subsystems are integrated independently with individual subsystem solvers



and individual micro-step sizes. At the macro-time points, information (coupling variables) is
interchanged between the subsystems. The coupling variables at the macro-time points are
denoted by uN = u(TN , zN ), where zN terms the overall vector collecting the numerical solutions
of all subsystems at the macro-time point TN .

In section 1, two different co-simulation approaches are explained. In section 2, the equations of
motion of the multibody subsystems are described in more detail. In section 3, a co-simulation
approach for controlling the macro-step size for coupled multibody systems is introduced.

1 Two Explicit Co-Simulation Approaches

In this section, two different methods for approximating the coupling variables are explained.
The two methods are illustrated in Figure 1. The polynomial degree is denoted by k. The
approximation polynomials for the macro-time step from TN to TN+1 are indicated by the
subscript N + 1. In order to distinguish between the approximation polynomials of the two
different methods, the approximation polynomials are extended by appropriate superscripts (ext,
int).

Figure 1. Approximation Polynomials

1.1 Method 1

The first approach makes use of a classical extrapolation technique [4]. The approximation
polynomials are denoted by pext

N+1. If the co-simulation is carried out with polynomials of degree
k, the vector pext

N+1(t) extrapolates u(t, z(t)) in the interval [TN , TN+1] by the k + 1 sampling
points pext

N+1(TN−k) = uN−k, . . . ,p
ext
N+1(TN ) = uN .

1.2 Method 2

Using the second method, the approximation polynomials are termed by pint
N+1. At first, a

predictor vector upre
N+1 extrapolating uN+1 by the k + 2 supporting points uN−k−1, . . . ,uN is

computed with the help of the Neville-Aitken scheme. Then, the vector pint
N+1(t) is constructed,

which interpolates u(t, z(t)) from TN to TN+1 by the k + 1 sampling points pint
N+1(TN−k+1) =

uN−k+1, . . . ,p
int
N+1(TN ) = uN ,p

int
N+1(TN+1) = upre

N+1.



1.3 Summary

The idea is to execute each macro-time step twice. Namely, once with the polynomials pext
N+1(t)

and secondly with the polynomials pint
N+1(t). The user chooses one of the two results for the

co-simulation. The result of the other integration only serves for the error estimation. Since the
integrations are executed in parallel, there is only little extra computation time necessary. It can
be shown that both methods have the same convergence order. Computing the error constants
of both methods, the local error can be estimated with the help of the Milne-device approach [3].
.

2 Coupling Multibody Systems with an Applied-Force Coupling Approach

Assuming that each subsystem is described by a multibody system, the equations of motion of
subsystem s (s = 1, . . . , r) read as

q̇s =Ks(t,qs)vs,
Ms(t,qs) v̇s = f s(t,qs,vs,λs,p(t)) ,

0= gs(t,qs,vs,λs) ,
(1)

where p(t) denotes a vector of polynomials approximating the coupling variables u(t,q(t) ,v(t))
between two consecutive macro-time points. The coupling variables are assumed to be indepen-
dent of the Lagrange multipliers λ, since we make use of an applied-force coupling approach. At
the macro-time point TN , the subsystems are coupled by p (TN )− u (TN ,q (TN ) ,v (TN )) = 0.
The matrix Ks(t,qs) describes the relationship between the velocity variables and the deriva-
tives of the position variables. The matrix Ms(t,qs) denotes the mass matrix of subsystem s.
The inner (not necessarily holonomic) constraints of subsystem s are denoted by the vector
gs(t,qs,vs,λs). The vector f s(t,qs,vs,λs,p(t)) contains the forces and torques in subsystem s.
We assume that the accelerations can be represented by

q̈s = as(t,qs,vs,p(t)) .

The accelerations of all subsystems are collected in the vectors

q̈ = a(t,q,v,p(t)) .

3 Co-Simulation Approach with Variable Macro-Step Size

3.1 Error Analysis

For the error analysis, it is assumed that the subsystems are solved exactly between two
consecutive macro-time points TN and TN+1. Hence, the error analysis only deals with the
error generated by the co-simulation, i.e. by the approximation of the coupling variables. The
numerical solutions at the macro-time point TN of all subsystems are collected in the vectors
qN , vN , λN . The coupling variables can be expressed by uN = u(TN ,qN ,vN ). We consider the
macro-time step from TN to TN+1. In the following considerations, q(t), v(t), λ(t) denote the
exact solutions with respect to the initial conditions q(TN ) = qN and v(TN ) = vN . We assume
that the numerical solutions qN−k−1, . . . ,qN−1 and vN−k−1, . . . ,vN−1 agree with this trajectory
with order O

(
Hk+2

)
at the macro-time points TN−k−1, . . . , TN−1, where H = TN+1−TN denotes

the current macro-step size. Furthermore, the constants

CiN+1 :=

∫ TN+1

TN

∫ τ

TN

LiN+1(t) dtdτ (i ∈ {k, k + 1}) (2)

are computed by integrating the Lagrange-basis polynomials

LiN+1(t) =
i−1∏
j=0

t− TN−j
TN+1 − TN−j

(3)



twice. In a more detailed analysis, it can be shown that the local errors of the position variables
for the two co-simulation methods are given by

qext
N+1 − q(TN+1) = Ck+1

N+1ap,N∆pN+1 +O
(
Hk+4

)
(4)

qint
N+1 − q(TN+1) =

(
Ck+1
N+1 − C

k
N+1

)
ap,N∆pN+1 +O

(
Hk+4

)
(5)

with ap,N := ap(TN ,qN ,vN ,uN ), which denotes the Jacobian-matrix of the accelerations
a(t,q,v,p) with respect to p. Further,

∆pN+1 := pext
N+1(TN+1)− pint

N+1(TN+1) (6)

terms the difference between the two approximation polynomials at the macro-time point TN+1.
Due to the fact that CkN+1 = O

(
H2
)
, Ck+1

N+1 = O
(
H2
)
, and ∆pN+1 = O

(
Hk+1

)
, the local errors

of the position variables converge with order O
(
Hk+3

)
.

3.2 Error Estimation

With the help of the Milne-device approach, an error estimator is constructed. The local error
of the co-simulation approach presented in subsection 1.1 can be estimated by

ε̂extN+1 :=
Ck+1
N+1

CkN+1

∥∥qext
N+1 − qint

N+1

∥∥ . (7)

The local error of the co-simulation approach explained in subsection 1.2 may be estimated by

ε̂intN+1 :=

(
1−

Ck+1
N+1

CkN+1

)∥∥qext
N+1 − qint

N+1

∥∥ . (8)

Analogously, an error estimator for the velocity variables can be constructed. It should be
pointed out that the local error of the velocity variables converges with order O

(
Hk+2

)
.

Conclusions

In order to generate an error estimator for explicit co-simulation approaches, each macro-time
step is carried out with two different methods of the same convergence order. Computing the
error constants, an error estimator for controlling the macro-step size can be constructed with
the help of the Milne-device approach. With this error estimator, the macro-step size can easily
be controlled by using well-known step-size controllers, for instance, a PI-step size controller [2].
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