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Micro Abstract
We propose a reduced-modeling protocol that accounts of topological modifications in elastoplastic
structures. We assume that topological modifications and mesh adaptations are restricted to a
subdomain termed the zone of interest. This zone of interest is surrounded by an hyper-reduced order
model that propagates boundary conditions by using empirical modes.
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Introduction

This paper presents a reduced-modeling protocol that accounts of morphological modifications
in structures submitted to elastoplastic transformations. We assume that the morphological
modifications and the related mesh adaptations are restricted to a subdomain termed the
region of interest (ROI). In the proposed protocol, a domain decomposition in two subdomains
is performed: one subdomain is the region of interest, the remaining part of the domain is
termed the surrounding domain. A recent numerical approach that couples hyper-reduced
approximations and finite element approximations, proposed in [2] for the solution of Navier-
Stokes equations, is extended to elastoplasticity. Here, we take advantage of the finite-elements
versatility to account for the morphological modifications. An hyper-reduced approximation
is set up over the surrounding domain. It aims at propagating boundary conditions towards
the region of interest. In this subdomain, both approximations interact. The propose protocol
enables to develop approximations for fields that surround a region of interest. The equations
fulfilled by theses fields are set up on a reduced integration domain, by following a usual
hyper-reduction method. Since only few elements of the surrounding domain are involved in the
reduced order model, this approach is named partial mechanics of far-fields (PMFF). It is very
versatile regarding morphological modifications. Offline and online phases are proposed for the
construction and the incorporation of the far-fields approximations. The novelty of this work
is the modeling of morphological and nonparametric modifications in plasticity, enabled by an
hybrid full-order/reduced-order model.

Hybrid full-order/reduced-order models have been proposed in the literature to circumvent the
lack of accuracy of reduced-basis approximations for specific problems. Hybrid modeling has
been proposed in [4] for nonlinear problems having nonlinear terms restricted to a subdomain.
Here, we do not assume localized nonlinearities. In [1, 5, 6] empirical modes have been coupled
to finite element approximations for nonlinear structural problems involving heat conduction or
plasticity or damage. Critical damages are known to generate morphological modifications in
damage simulation. Here, equilibrium equations in the surrounding domain are setup by the
recourse to a reduced integration domain (RID).

The proposed equations sound like Hyper-reduced equations, but attention must be paid to
coupling terms in the region of interest in order to strongly couple the local finite element (LFE)
approximation and the reduced basis approximation related to far fields.



Matrix and second-order tensors are denoted by a bold capital letter A. Vectors are denoted
by a small bold letter a. Entries of a matrix A are denoted by aij . The 2-norm for vectors
is denoted by ‖ · ‖2. In the remainder, the vector containing the entries selected by a set of

row indices denoted by H, reads r[H] ∈ RCard(H). The row selection applied to all columns

of V ∈ RN×N reads V[H, :] ∈ RCard(H)×N . We denote u(·, t) the displacement field at time t.
The usual residual of the finite-element equilibrium-equations is denoted by r(u) ∈ RN . The
finite element shape functions are (ϕi)

N
i=1.

1 Partial mechanics of far fields

Let’s assume that a reduced basis is available for the approximation of the displacements over
the entire domain, denoted by Ω. This reduced basis is termed the far field reduced basis. The
far field modes of this reduced basis are denoted by ψR

k such that:

ψR
k (x) =

N∑
i=1

ϕi(x) vRik, k = 1, . . . , N, VR ∈ RN×N , N < N , rank(VR) = N (1)

In practice, this reduced basis is obtained by the usual proper orthogonal decomposition of
solutions generated during an unsupervised machine learning stage. The ROI, denoted by ΩF , is
defined by a given set of degrees of freedom F where the LFE approximation is setup:

ΩF = ∪i∈F supp(ϕi) (2)

For the sake of simplicity, degrees of freedom are ordered such that F = {1+N−Card(F), . . . ,N}.
Then the empirical modes of the hybrid approximation are:

ψk(x) =
N∑
i=1

ϕi(x) vik, k = 1, . . . , N + Card(F), V =

[
0
I

VR

]
(3)

Here I ∈ RCard(F)×Card(F) is the identity matrix related to the degrees of freedom in F .
Formally, when the mesh on ΩF is modified to account for morphological changes, the modes in
VR have to be projected by using the finite element shape functions. In the sequel, we assume
that rank(V) = N + Card(F).

Here, an hyper-reduced order model is a boundary value problems restrained to a reduced
integration domain [7], denoted by Ω̂, whose extent is the union of few shape-function supports
such that:

Ω̂ = ∪i∈Hsupp(ϕi) (4)

We adopt the last approach because it preserves the usual assembly loop on the elements involved
in finite element simulations. Then all local constitutive equations can be considered, especially
elastoplastic models.

When the boundary value problem is restrained to a subdomain Ω̂ by using an HROM, an
additional boundary condition is introduced in order to obtain a well posed problem. The
additional boundary condition is set up on the interface between the RID and the remaining

part of the domain. This interface reads: Γ = Ω̂ ∩ Ω̃, Ω̃ = Ω\Ω̂ where Ω\Ω̂ is the complement
of Ω̂ extended to its boundary. By following [7], the additional boundary condition is similar to
a Dirichlet boundary condition. It requires a proper restriction of the modes to Ω̂, such that the
restrained modes are kinematically admissible fields with respect to an homogeneous Dirichlet
boundary condition on Γ. The convenient restriction of the modes to the RID is denoted by ψ̂k,
such that:

ψ̂k(x) =
∑
i∈L

ϕi(x) vik, k = 1, . . . , N, L =

{
i ∈ {1, . . . ,N}|

∫
Ω̃
ϕ2

i (x) dx = 0

}
(5)



where L is the set of degrees of freedom that are not on the interface Γ and neither in the outer
part of the RID. By construction we have: H ⊆ L. The hyper-reduced equilibrium equations
read:

V[L, :]T r(u)[L] = 0,with u =

N+Card(F)∑
k=1

ψk(x) γk(t) (6)

By following the HR method proposed in [7], H contains the interpolation indices generated by
the discrete empirical interpolation method (DEIM) [3] applied to V. There is various way to
extend H in order to include more indices. More details about this extension are given in [7].
Here, interpolation indices are also extracted from a POD basis related to stress. These indices
are then connected to indices of degrees of freedom, through the mesh, and included in H.
Here, because of the shape of the hybrid matrix V, the first interpolation indices computed
by the DEIM are all the indices in F . Then the RID contains the ROI and L = LR ∪ F with
LR ∩ F = ∅.

2 Coupling terms

The domain Ω is split into ΩF and the remaining part ΩR. The interface between ΩR and ΩF is
denoted by Φ, Φ = ΩF ∩ ΩR. The set of degrees of freedom on Φ is denoted by I:

I =

{
i ∈ {1, . . . ,N} |

∫
Φ
ϕ2

i (x) ds > 0

}
(7)

Attention must be paid to the construction of the RID, in order to preserve coupling terms
between the LFE and far field modes. Same considerations can be found in [2] for Navier-Stokes
equations. This point is essential because the far field modes aim at propagating boundary
conditions toward ΩF .

Since ΩF ⊂ Ω̂, the indices of I can be supported by nodes either on Γ or inside Ω̂. This affect
the coupling terms in the setting of momentum equations for PMFF.

Let’s consider the Jacobian matrix of the FE approximation. It has the following block shape:

J =

[
JRR JRF

JFR JFF

]
∈ RN×N , JFF ∈ RCard(F)×Card(F) (8)

such that:
jRF ip = 0 ∀ i /∈ I, i ≤ N − Card(F), p ∈ {1, . . . ,Card(F)} (9)

The hyper-reduced setting of the Newton Raphson’s linear step reads: find δγ ∈ RN+Card(F)

such that
V[L, :]T r[L] + V[L, :]T J[L, :] V δγ = 0 (10)

Attention must be paid to the first row block in J. In this first row block the contribution of the
coupling terms reads:

V[LR, :]T JRF [LR, :] V[F , :] (11)

We propose to include I to H after the selection of interpolation indices, during the RID
construction, in order to have non zero terms in JRF [LR, :]. This preserves a strong coupling
between le LFE approximation and the far field modes.

3 Numerical example

We consider a cantilever beam with perfect plasticity and a spherical pore in it, as shown in
Figure 1. The far field modes have been computed without any pore. The error on the prediction
of the cumulated plastic strain is shown on Figure 1, over the RID only. The maximum error
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Figure 1. On the left, the von Mises stress predicted by the finite element method; on the right, the relative
error on the cumulated plastic strain over the reduced integration domain related to the partial mechanics of
far fields.

is 5%. The simulation speedup is 4. Obviously, the larger the pore’s volume fraction the less
accurate the prediction.

Plasticity under non parametric morphological modifications is accurately predicted by the
hybrid-hyper-reduced order model. This open a new route to consider defects in materials such
as pores or inclusions. It is termed the partial mechanics of far fields.
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