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Micro Abstract
A general thermodynamically consistent constitutive framework for thermo-magneto-mechanically
coupled phenomena is devised in this contribution. A generalized formulation for the total thermo-
magneto-mechanical energy function in an additive form is presented where the magneto-mechanically
coupled effect is linearly scaled with the temperature. The framework is verified using a classical
non-linear boundary value problem.
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Introduction

In the recent years a growing interest in the study of so-called smart materials in the finite
deformations regime emerged. In this context especially magnetorheological elastomers (MREs)
are a promising class of materials. MREs react with large deformations and a change in their
mechanical properties in response to external excitations by a magnetic field which makes them
interesting candidates for applications such as tunable stiffness and damping devices.

1 Basics of non-linear magneto-mechano-statics

1.1 Kinematics

Since polymeric materials typically can undergo large deformations we distinguish between the
material configuration B0 and the spatial configuration Bt. To describe the deformation of the
body material coordinates X in B0 are mapped through the nonlinear deformation map χ onto
the spatial coordinates x in Bt. The deformation gradient F is defined as the gradient of the
deformation map χ with respect to the material coordinates X, i.e.

F := Grad χ; J := detF > 0, (1)

where J is the Jacobian determinant of the deformation gradient that has to be positive in order
to avoid any unphysical deformations.

1.2 Balance laws

1.2.1 Material configuration

Within a material body, the relation between the magnetic field H and the magnetic induction
B is given in terms of the magnetization M and the magnetic permeability in vacuum µ0

B = Jµ0C
−1[H+M] in B0, (2)

where C−1 is the inverse of the right Cauchy-Green tensor C = F TF . If we assume the
magnetostatic case where the free current density is zero and the electric displacement is
constant in time, Ampere’s law together with the absence of magnetic monopoles yields

Curl H = 0, Div B = 0, (3)



where Curl and Div denote the corresponding differential operators with respect to the position
vectors X in B0. On the boundary between the material and the free space the jump [[•]] is
defined as the difference of a quantity with regard to the outward pointing normal vector n, i.e.:
[[•]] = {•}out − {•}in. For the magnetic field and the induction this leads to

N · [[B]] = 0 and N × [[H]] = Ĵf (4)

where Ĵf denotes the free surface current density. As a stress measure in the material configuration
we define the total Piola stress tensors P tot as the combination of the mechanical Piola stress P
and the ponderomotive Piola stress P pon

P tot = P + P pon = P + Pmag + Pmax. (5)

The ponderomotive contribution can be decomposed into the magnetization stress Pmag and
the Maxwell stress Pmax. This term can be transformed into its spatial counterpart, the total
Cauchy type stress σtot by the relation σtot = J−1P totF T . The mechanical behavior is governed
by the balance of linear momentum in combination with the mechanical tractions tp0

Div P tot + b0 = 0 with [[P tot]] ·N = −tp0 on ∂Bt0. (6)

2 Non-linear thermo-magneto-elasticity

2.1 Constitutive equations

We express the total energy function as Ω(F ,Θ,H) = Ψ(F ,Θ,H) +M∗
0 (F ,H), with the free

field magnetic complementary energy M∗
0 (F ,H) per unit undeformed volume. In the absence of

a free current density, the Clausius-Duhem inequality can be expressed as

δ0 = P tot : Ḟ −B · Ḣ− Ω̇−HΘ̇−Q · Grad(Θ)

Θ
≥ 0, (7)

where H is the entropy and Q is the heat flux vector in the material configuration. Now, we can
express the constitutive relations in terms of the total energy as

P tot =
∂Ω

∂F
, with Pmax =

∂M∗
0

∂F
, B = − ∂Ω

∂H
, H = −∂Ω

∂Θ
, (8)

see, e.g. [3] for further details. After applying the Coleman-Noll argumentation to Equation (7),
the reduced conductive dissipation power density reads

δcon
0 = −Q · Grad(Θ)

Θ
≥ 0. (9)

2.2 Energy function

In order to derive a thermo-magneto-mechanically coupled energy function we assume that
the heat capacity at constant deformation and constant magnetic fields cF ,H is constant, i.e.
cF ,H(Θ) = cF ,H(Θ0) = c0, whereby Θ0 is the reference temperature. From the definition of c0

we obtain

c0 = −Θ
∂2Ψ

∂Θ∂Θ

!
= const.⇒ −c0

Θ
=

∂2Ψ

∂Θ∂Θ
, with Ψ = Ψ(F ,Θ,H). (10)

If the above relation is integrated twice from Θ0 to an arbitrary temperature Θ, it becomes

Ψ = c0

[
Θ−Θ0 −Θ ln

( Θ

Θ0

)]
−
[
Θ−Θ0

]
M1(F ,H) +W (F ,H). (11)



where the integration constant M1 may depend on the deformation gradient F and the magnetic
field H, which can be decomposed additively into a purely mechanical part M(F ) and a magneto-
mechanically coupled part C(F ,H), i.e. M1(F ,H) = M(F ) + C(F ,H). For isotropy, the
isothermal energy function W (a function in F and H) at the reference temperature depends
on the magneto-mechanical coupled invariants, i.e. I1 to I6 as W (F ,H) = W (I1, · · · I6). As
discussed in [2], in the case of large deformations, there are various forms to express the purely
mechanical part M(F ). One of the simplest forms could be M(F ) = 3κβ ln(J), where κ is the
bulk modulus coefficient at the reference temperature and β is the thermal expansion coefficient.
For the magneto-mechanically coupled part C(F ,H) we assume a relation in line with the one
proposed by Vertechy et al. [1] for thermo-electro-elasticity, which can be obtained by assuming

C(F ,H) = − 1

Θ0
W (F ,H). (12)

This eventually yields a complete thermo-magneto-mechanically coupled energy function as

Ψ(F ,Θ,H) =
Θ

Θ0
W (F ,H) + c0

[
Θ−Θ0 −Θ ln

( Θ

Θ0

)]
−
[
Θ−Θ0

]
M(F ). (13)

To obtain a full expression of the temperature-dependent energy function derived in Equation
(13), we need to define an isothermal energy function W (F ,H) at the reference temperature.
For the sake of simplicity, a coupled incompressible Neo-Hookean-type material law depending
on the invariants I1, I4 and I5 is proposed. We assume that the shear modulus, due to its
field-responsive nature depends on the applied magnetic field. For an increase in the stiffness
due to magnetization and the phenomenon of magnetic saturation after a critical value of
magnetization, a hyperbolic function such as µe/4 [1 + αetanh (I4/me)] is assumed, where µe is
the shear modulus of the material in the absence of a magnetic field

W (F ,H) =
µe
4

[
1 + αe tanh

(
I4

me

)]
[I1 − 3] + c1I4 + c2I5. (14)

The parameterme is required for the purpose of non-dimensionalisation while αe is a dimensionless
positive parameter for scaling. The parameters c1 and c2 relate to the magneto-mechanical
coupling. For αe = c1 = c2 = 0, this simplifies to the classical Neo-Hooke elastic energy density
function widely used to model elastomers.

2.3 Magneto-mechanically coupled heat equation

From the first law of thermodynamics, the governing equation for the evolution of the thermal
field can be written in entropy form as

ΘḢ = R−DivQ+Dloc with Dloc ≡ 0, (15)

with the heat source R and the heat flux vector Q in the material configuration. By combining
Equation (15) with the constitutive relation H = −∂Ψ

∂Θ we obtain the heat conduction equation
in the format

c0Θ̇ = R−DivQ+ Θ∂Θ

[
P tot : Ḟ +B · Ḣ

]
. (16)

In contrast to the classical heat equation, this format contains two additional contributions.
The structural thermo-mechanical cooling/heating effect related to Ḟ and the thermo-magnetic
heating/cooling effect related to Ḣ, see Vertechy et al. [1], Mehnert et al. [2] for a similar
expression in the case of thermo-electro-elasticity.

3 Non-homogeneous boundary value problem

A cylindrical tube is deformed under a combination of axial extension, due to the normal force
N , and radial expansion that is the result of a pressure P on the internal surface of the tube.
Simultaneously a radial temperature gradient and an azimuthal magnetic field are applied.



The geometry of the tube in the spatial (lower case letters) and in the material configuration
(upper case letters) is described by

ai ≤r ≤ ae; 0 ≤ φ ≤ 2π; 0 ≤ z ≤ l,
Ai ≤R ≤ Ae; 0 ≤ Φ ≤ 2π; 0 ≤ Z ≤ L.

(17)

In the considered case it is reasonable to work in the cylindrical coordinates (R,Φ, Z) with the
unit basis vectors (ER,EΦ,EZ) defined in the material configuration. In the spatial configuration
these quantities are defined as (r, φ, z) and (er, eφ, ez), respectively. Thus the transformation
from the undeformed to the deformed configuration reads

r2 = λ−1
z

[
R2 −A2

i

]
+ a2

i , φ = Φ, z = λzZ, (18)

where the first relation is based on the incompressibility assumption and λz is the uniform axial
stretch. This results in a deformation gradient that only has entries on the main diagonal. In
cylindrical coordinates the radial, circumferential and axial entries read

λr = [λλz]
−1; λφ =

r

R
= λ; λz. (19)

We assume that the outer surface of the tube is free of mechanical loads, i.e. σtot
rr (ae) = σmax

rr (ae),
whereas the pressure P acts at the internal surface. This results in the total radial Cauchy stress

σtot
rr (ai) = σmax

rr (ai)− P. (20)

Using these boundary conditions in combination with the governing equations, the heat equation
and the thermo-electro-mechanical framework an expression for both P and N can be derived
giving an explicit characterization of the material behavior taking into account the influence of
the applied non-mechanical fields.

Conclusions

In this contribution, we present a thermo-magneto-mechanically coupled framework for magneto-
rheological elastomers that can operate in finite deformations. Departing from relevant laws of
thermodynamics, we derive a thermodynamically consistent formulation in which temperature
is an independent variable in addition to the mechanical and magnetic fields. In order to
demonstrate the applicability of our proposed constitutive framework, a non-homogeneous
boundary value problem that has frequently been used in finite elasticity and magneto-elasticity
is presented. In this example a cylindrical thick-walled tube is subjected to a combination of
radial inflation and axial extension, while simultaneously a circumferential magnetic field and a
radial temperature gradient are applied.
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