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Micro Abstract
A new framework for the simulation of shape memory alloys (SMA) and TRIP steels undergoing
martensite-austenite phase transformations is introduced. The goal is the derivation and elaboration
of a generalised model which facilitates the reflection of the characteristic macroscopic behaviour of
SMA as well as of TRIP steels. The model is implemented in a micro-sphere formulation in order to
capture polycrystalline behaviour and to simulate three-dimensional boundary value problems.
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Introduction

The micro-sphere framework is a powerful tool for the modeling of different phenomena observed
in different classes of solids, cf., e.g., [3–5, 9] for the micro-sphere-based modelling of dissipative
and non-dissipative effects in rubber, bone, and polycrystalline metals. As a basis for the
material model presented here—aiming at the simulation of polycrystalline materials undergoing
solid to solid phase transformations—we introduce a formulation where a Helmholtz free energy
function depending on volumetric and deviatoric strain measures—as well as plastic strains and
temperature—is assigned to each phase. A Legendre transformation of the potential yields the
overall Gibbs energy density, based on which we calculate Gibbs energy barriers, cf. [6]. The
energy barriers enter a transformation approach derived from statistical physics, enabling the
specification of evolution equations for individual volume fractions. The resulting formulation
is embedded in a micro-sphere framework for the simulation of three-dimensional boundary
value problems. Within the finite element implementation, the local material behaviour in each
integration point is governed by an individual response of the micro-sphere model.

1 Infinitesimal strain formulation

For all phases α ∈ {1, . . . , ν} ⊂ N within the multi-phase formulation, the corresponding volume
fractions ξα ∈ [0, 1] ⊂ R are subject to

∑
α ξ

α = 1, so that
∑

α ξ̇
α = 0, as implied by mass

conservation. The evolution of the individual volume fractions ξα is based on an approach
from statistical physics, where a transformation probability matrix—or rather the infinitesimal
generator of a Markov process—Q ∈ Rν×ν drives the phase evolution via ξ̇ = Q · ξ, cf. [2]. The
operator Q is composed of transformation probabilites Pα→β ∈ [0, 1] ⊂ R, which themselves are
derived from Gibbs energy barriers bα→β that need to be overcome for transformation from one
phase, say α, to another phase, say β.

The overall Helmholtz free energy potential of the phase mixture is denoted as Ψ =
∑

α ξ
αψα,

with ψα = ψ̂α(εdev, εvol, ε
α
pl, θ) the Helmholtz free energy associated to any given phase α

depending on a deviatoric and volumetric strain measure, εdev and εvol, as well as plastic



Figure 1. Temperature-dependent response obtained for a SMA simulation within the infinitesimal strain
framework: the formulation captures the pseudo-plastic behaviour at lower temperatures, such as θ = 0 ◦C
(left), as well as the pseudo-elastic behaviour typically observed at elevated temperatures (θ = 160 ◦C, right).

strains εαpl and temperature θ. In view of the embedding into a micro-sphere framework with
volumetric-deviatoric split in kinematics, the individual energy contributions are composed of
deviatoric and volumetric energy terms, ψαdev and ψαvol, besides thermal and chemical parts, so
that ψα = ψαdev + ψαvol + ψαtherm + ψαchem. Details on the specification of these terms are provided
in [7].

1.1 Macroscopic stress response and tangent operator

In the context of the infinitesimal strain micro-sphere approach, the macroscopic stress tensor σ
is obtained by integration over the unit sphere, resulting in the numerical approximation

σ =
1

4π

∫
U2

∂Ψ

∂ε
da ≈

nr∑
i=1

∂Ψi
∂ε

w̄i =

nr∑
i=1

∂

∂ε

(
ν∑

α=1

ξαi ψ
α
i

)
w̄i =

nr∑
i=1

ν∑
α=1

ξαi σ
α
i (1)

with σαi the tensor-valued stress contribution of phase α situated in the ith micro-sphere
integration direction and nr the number of spatial integration directions. A representative
stress-strain response obtained for SMA at different temperature levels is provided in Fig. 1. In
view of the finite element implementation, the required algorithmic tangent modulus reads

Ealg :=
dσ

dε
=

nr∑
i=1

∂σi
∂ε

+

nr∑
i=1

ν∑
α=1

∂σ

∂sαi
· ∂s

α
i

∂ε
, (2)

with sαi = [ξαi , ε
α
pl,i] the vector of internal variables associated to phase α in the ith micro-sphere

integration direction ri. To highlight the behaviour of the model under inhomogeneous loads,
we provide the results of a finite element simulation in Fig. 2.

Figure 2. Finite element implementation of the infinitesimal strain micro-sphere formulation: prescribed
tensile displacements, tensile strains, tensile stresses, evolution of martensite (from left to right), cf. [5].

2 Finite strain extension

The aforementioned formulation, introduced within an infinitesimal strain micro-sphere frame-
work, captures several experimentally observed effects of SMA and TRIP steel undergoing phase



Figure 3. Differential geometric relations for the finite strain micro-sphere framework.

transformations—including the temperature-dependent pseudo-elastic and pseudo-plastic be-
haviour of SMA, the stress-strain-temperature response of SMA, and the macroscopic stress-strain
response including work hardening of TRIP steel [5]. We now aim at the finite strain generalisa-
tion of the overall formulation. For conceptual clarity, we restrict this extension to an austenitic
parent phase, A, and a single martensitic tensile phase, M, for now, i.e. α = {A,M}. Moreover,
we consider only one kinematic strain measure, the normal strain λN , on the micro-plane.
Following the thermodynamically consistent finite strain micro-sphere framework established
in [1], this strain is characterised as λN = ||F ·N || =

√
N ·C ·N with N the normal of the

associated material micro-plane, cf. Fig. 3.

2.1 Multiplicative strain decomposition and free energy

In view of Bain-type transformation strains associated with the martensite phase, the micro-
plane strain measure is multiplicatively decomposed into elastic and transformation related
contributions, λαN and λαtr, via λN = λαN λ

α
tr. The elastic strains entering the free energy function

of a particular phase, say α, thus directly follow as λαN = λN [λαtr]
−1. Here, the index N relates

to the micro-sphere integration direction with material normal N , cf. Fig. 3.

The micro-plane Helmholtz free energy ψαN = ψ̂αN (λN ) for each phase α is chosen as

ψ̂αN (λN ) = Eα
[

1

2

[
λN [λαtr]

−1
]2

+
1

3

[
λN [λαtr]

−1
]−3
− 5

6

]
, (3)

with Eα representing a scalar-valued micro-plane elasticity coefficent. This specific energy
potential is a straight-forward extension of the structure elaborated in [1]. The overall Helmholtz
free energy ΨN = Ψ̂N (λN ) of the phase mixture associated to the micro-plane with material
normal N is Ψ̂N (λN ) =

∑
α ξ

α
N ψ̂

α
N (λN ).

Figure 4. Macroscopic stress-strain response (left) and naturally captured grain locking effect (right).
F (t) = I + κ(t) e1 ⊗ e1 with κ(t) ∈ [0, 0.2] ⊂ R is prescribed as a time-proportional load, cf. [8].



2.2 Macroscopic stress response

The material stress SN = ŜN (λN ) associated with a micro-plane N follows from (3) via
ŜN (λN ) = ∂Ψ̂N (λN )/∂λN =

∑
α ξ

α
N ∂ψ̂

α
N (λN )/∂λN . The macroscopic Cauchy stress tensor σ

then reads

σ =
1

J
F ·
[

3

4π

∫
U2

Ŝ(λN )λ−1N N ⊗N dω

]
· F t , (4)

with an exemplary, representative computation provided in Fig. 4.

Conclusions

For the formulation of a model that captures the austenitic-martensitic tranformation behaviour
both in shape memory alloys (SMA) and in TRIP steels, a couple of aspects need careful
attention. In TRIP steels, the interactions between plasticity and phase transformations play
an important role in view of the overall macroscopic response. As a result, appropriate models
need to take into account multi-phase plasticity. Moreover, the experimentally observed volume
change that TRIP steel, unlike SMA, shows during ongoing phase transitions must be accounted
for. To this end, the framework presented here—formulated in terms of decoupled deviatoric
and volumetric strain measures—facilitates introducing a non-zero volumetric transformation
strain, cf. [7]. Finally, appropriate hardening laws are required to capture the pronounced work
hardening related to TRIP steel, cf. [5].

The provided ansatz for a generalisation of the infinitesimal strain framework towards a geo-
metrically exact formulation is viewed as a promising foundation for further extensions towards
coupled anisotropic finite strain plasticity and temperature effects in polycrystals undergoing
large strains.
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