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Micro Abstract
We propose a hybrid additive/multiplicative Schwarz preconditioner for the monolithic solution
of surface-coupled problems. Existing physics-based block preconditioners have proven to be very
powerful but accumulate the error at the coupling surface. We address this issue by combining them
with an additional additive Schwarz preconditioner, whose subdomains span across the interface on
purpose. By performing cheap but accurate subdomain solves this error accumulation can be reduced
efficiently.
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Introduction

Physical phenomena that include the coupling of multiple physical fields are omnipresent in our
world. One prominent representative is the interaction of an incompressible fluid flow with solid
bodies undergoing finite deformation, commonly referred to as fluid-structure interaction (FSI).
Although already being studied for decades, solving such problems efficiently still poses a great
challenge for numerical algorithms. Promising approaches are monolithic solvers as described by
Mayr et al. [5] for example. They require powerful preconditioning techniques like physics-based
block preconditioners utilizing algebraic multigrid (AMG) methods [3].

Here, we propose a novel hybrid additive/multiplicative Schwarz preconditioner based on an
overlapping domain decomposition with subdomains intentionally spanning across the fluid-
structure interface. To address the issue of error accumulation at the coupling surface in case of
physics-based block preconditioners, we combine them with an additional additive Schwarz
preconditioner whose subdomain solves are insensitive to the presence of the interface.

Fluid-Structure Interaction in a Nutshell

To establish a monolithic solution method for the coupled FSI problem, where all equations are
solved simultaneously, spatial and temporal discretization are performed field-wise before the
final assembly of the monolithic system of equations. For the spatial discretization of the solid
and the fluid field we employ the finite element method.

Temporal discretization is done by finite differencing. For time integration, we use fully implicit,
single-step, single-stage time integration schemes. In the solid field, we employ the generalized-α
method [1]. The fluid field either uses the generalized-α method [4] or the one-step-θ scheme [2].

Putting the residual expressions rS, rG and rF from the solid, the ALE, and the fluid field
as well as the kinematic constraint rcoupl together yields the monolithic nonlinear residual

vector rFSI
T

=
[
rS rG rF rcoupl

]T
that needs to vanish in every time step. The nonlinearity

is treated by a Newton–Krylov method with FSI-specific preconditioning. After assembly,



consistent linearization, and subsequent static condensation of the Lagrange multiplier and
slave side interface degrees of freedom, the monolithic system of linear equations schematically
reads  S CSF

A CGF

CFS CFG F

 ∆xS

∆xG

∆xF

 = −

 rS

rG

rF

 . (1)

The matrices S, A, and F on the main diagonal reflect the solid, the ALE, and the fluid
field residual linearizations, respectively. The coupling among the fields is represented by the
off-diagonal blocks Cij , where superscripts i, j ∈ {S,G,F} indicate the coupling between the
fields.

The Hybrid Preconditioner

To set up a combined preconditioner two building blocks are necessary, namely one physics-based
block preconditioner M−1

MS plus the additional preconditioner M−1
AS based on the partition of the

domain in subdomains.

For M−1
AS the block structure of the system matrix is of no importance. Sorting all unknowns by

their affiliation to subdomains yields the matrix representation

A =


A00 A01 · · · A0n

A10 A11 · · · A1n
...

...
. . .

...
An0 An1 · · · Ann

 (2)

distributed among n subdomains, where n usually equals the number of processes nproc. Ma-
trices Aii are restrictions of the global matrix A to process i, while off-diagonal matrices Aij

and Aji account for the coupling between the local subproblems on processes i and j. All
process-local matrices in (2), especially the off-diagonal ones, are sparse. The additional precon-
ditioner M−1

AS is obtained by dropping all off-diagonal coupling blocks in (2), which results in
the additive Schwarz preconditioner

M−1
AS =


A00

A11

. . .

Ann


−1

=


A−1

00

A−1
11

. . .

A−1
nn

 .
In order to tackle error accumulation due to physics-based block preconditioners the subdomains
must span across the interface, see Figure Figure 1.

Physics-based block preconditioners M−1
MS like block Gauß–Seidel (BGS) are formally of

multiplicative Schwarz type, which has been indicated by the subscript MS. Respectively, the
notation M−1

AS of the additional preconditioner with its subscript AS refers to additive Schwarz
methods.

The physics-based block preconditioner M−1
MS and the additional additive Schwarz precondi-

tioner M−1
AS are chained together to form the hybrid additive/multiplicative Schwarz precondi-

tioner. It is applied in a multiplicative Schwarz fashion, reading

M−1
HS = M−1

AS ◦M−1
MS ◦M−1

AS (3)

where the additive Schwarz preconditioner is applied before and after the physics-based block
preconditioner. In GMRES iteration k, the preconditioner (3) is applied to the linear system via
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Figure 1. Overlapping domain decompositions of a FSI problem — Left: At the fluid-structure interface ΓFSI,
the domain is partitioned into solid and fluid subdomains indicated by dashed lines. Each field can further be
distributed among several processes by an overlapping domain decomposition indicated by the colored patches.
Overlap of subdomains is not depicted for clarity of presentation. Right: The subdomains span across the
interface like ’proc 0’ and ’proc 2’. They are crucial for the effectiveness of the proposed preconditioner. Some
processes might not own portions of both fields, e.g. ’proc 1’. Overlap of subdomains is not depicted for
clarity of presentation.

three stationary Richardson iterations

xk
I = xk

0 + ωASM
−1
AS

(
b−Axk

0

)
xk
II = xk

I + ωMSM
−1
MS

(
b−Axk

I

)
xk
III = xk

II + ωASM
−1
AS

(
b−Axk

II

) (4)

with damping parameters ωAS and ωMS and the initial solution xk
0. Intermediate steps after the

first and second Richardson iteration are denoted by xk
I and xk

II, respectively, while the final
result of the preconditioning operation is referred to as xk

III.

Numerical Experiments and Results

We study the performance of the proposed preconditioner using the pressure wave benchmark
test, cf. [3, 5] among others. We compare our new approach to two powerful variants of FSI-
specific multigrid preconditioners, namely an outer block Gauß–Seidel (BGS) method with
AMG-based approximations of block inverses and an AMG hierarchy of the coupled problem
with BGS level smoothers [3]. These physics-based approaches are referred to as BGS(AMG) and
AMG(BGS), respectively. Solid and ALE blocks are treated with Smoothed Aggregation AMG
with Chebychev polynomials as level smoothers, while the fluid block is addressed with Petrov–
Galerkin AMG with damped symmetric Gauß–Seidel level smoothers. Direct solvers are
used on the coarse level in every field. For the hybrid preconditioner (3), we choose M−1

MS to
be BGS(AMG) or AMG(BGS) and use ILU(0) factorizations for the subdomain solves in M−1

AS.
Depending on the choice for M−1

MS, we denote the hybrid variants by H-BGS(AMG) and H-
AMG(BGS), respectively. GMRES iteration counts as well as pure solver time and solver time
including preconditioner setup are reported in Figure 2 for a problem with 1,948,161 unknowns
solved on 256 cores. Iteration counts and pure solver time are reduced by at least 20% by the
hybrid preconditioner, while total solver time including setup of the preconditioner is reduced
by at least 15%. In addition to these remarkable computational savings, weak scalability of the
proposed preconditioner could be demonstrated.
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Figure 2. The comparison of GMRES iteration counts and timings of purely physics-based block
preconditioners and their hybrid counterparts demonstrates the efficiency of the novel preconditioner.

Concluding Remarks

We proposed a novel hybrid preconditioner for monolithic FSI solvers, that combines powerful
physics-based block preconditioners with an additional additive Schwarz preconditioner whose
subdomain solves are insensitive to the presence of the interface. The novel approach reduces
computational cost by at least 20% in large-scale examples and additionally exhibits weak
scalability.
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