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Micro Abstract
Our work presents volumetric effective properties in dependence on the degree of cure. They are
obtained by homogenization for a representative unit cell on the heterogeneous microscale. To
this end, analytical solutions for (n)- and (n + 1)-layered composite sphere models are derived.
In a numerical study it is demonstrated that the effective properties lie within certain bounds.
Moreover, application of the effective properties to the curing of fibre reinforced polymers is investigated.
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Introduction

During resin transfer molding, a production process for fibre reinforced composites (FRP),
starting with the initial uncured state the matrix of the FRP as a mixture of resin (r) and
curing agent (ca) undergoes a polymerization process during curing to a solid material (sol).
A simulation of such a production process requires the thermo-chemo-mechanical effective
material properties (also known as overall or bulk properties, respectively) in terms of a so called
degree of cure z. For this purpose two conceptions for the matrix, a homogeneous mixture and
a heterogeneous mixture can be distinguished: A homogeneous mixture for all constituents,
resin, curing agent and solidified material results e.g. in the compression moduli derived in [1]
and [2] depending on z. These results are regarded to as (Voigt and Reuss) bounds for more
advanced approaches, where a geometrical arrangement of the microscale is taken into account
by a heterogeneous mixture. In this context, the (2)-layered composite sphere model originally
introduced in [3] is extended to account for thermo-chemo-mechanical coupling in [4]. In this
work, n spherical constituents accounting for thermo-chemo-mechanical coupling are taken into
account.

a) b) c)

R1

Ri

Rn
Matrix

θ, z

p v(i)

v(1)

v
v(n)

Rn

Matrix

θ, z

p

v

Figure 1. Two idealizations of the inclusion: a) heterogeneous n-layered composite sphere, b) homogeneous
sphere and c) 3-layered composite sphere (micro-RVE) over time: initial uncured, partially cured and fully
cured state.

1 An n-layered composite sphere model for thermo-chemo-mechanical loading

The two different idealizations shown in Fig. 1.a,b have in common that a spherical inclusion
is embedded in an infinite homogeneous medium denoted as matrix. Both are subjected to a
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uniform thermal loading in terms of a prescribed temperature θ, a chemical loading in terms
of a degree of cure z and a mechanical loading in terms of a prescribed pressure p. For a
heterogeneous mixture denoted as het an n-layered composite sphere model according to Fig.
1.a is assumed with n spherical inclusions on the microscale. The constituents i ∈ [1, n] with
partial volumes v(i) and corresponding radii Ri assemble to a total volume v. In order to obtain
effective properties, this is considered as a micro-RVE.

We assume a decomposition of the strain tensor according to the geometric linear theory into

elastic, thermal, and chemical parts ε(i) = sym{∇u(i)} = ε
(i)
el + ε

(i)
th + ε

(i)
cur for i ∈ [1, n], where

u(i) is the displacement vector defined at any point P (i) within the volume v. The equilibrium
condition is written at any point P (i) as divσ(i) = 0, i ∈ [1, n]. Furthermore, the following
constitutive equations are employed for the individual strain contribution

1. ε
(i)
mech =

(
C(i)

)−1
: σ(i), 2. ε

(i)
th = α(i)∆θ1, 3. ε(i)cur = β(i)1, i ∈ [1, n], (1)

with fourth order elasticity tensor C(i), heat- and curing-dilatation coefficients α(i) and β(i) for
phase i and a homogeneous temperature change ∆θ = ∆θ(i) for i ∈ [1, n]. We remark, that Eq.
(1.1) and Eq. (1.2) are dependent on the state variables σ(i) and ∆θ, respectively, whereas Eq.
(1.3) is independent of state variables. The boundary value problem (BVP) is constituted by the
Navier-Lamé differential equation (resulting from the equilibrium condition in radial direction)
together with the continuity conditions at the interfaces and a boundary condition where we
exploit that the micro-RVE is subjected to a pressure p.

Next, an equivalent homogeneous spherical inclusion is considered with a loading as shown in
Fig. 1.b. The basic relations for the n-layered inclusion are applied to this inclusion by setting
n = 1. Analogously to Eq. (1), the constitutive equations

1. εmech = C−1 : σ, 2. εth = α∆θ1, 3. εcur = βz1, (2)

are employed. In Eq. (2) we have the fourth order elasticity tensor C, the heat- and the curing-
dilatation coefficients α and β, the temperature change ∆θ and the degree of cure z, respectively.
Upon comparing Eq. (2) to Eq. (1), we observe the same structures for Eq. (2.1) and Eq. (1.1)
as well as for Eq. (2.2) and Eq. (1.2), since they are dependent on the state variables p and
∆θ, respectively. Contrary to the temperature θ, the degree of cure z cannot be assumed
homogeneous within the heterogeneous mixture. Therefore, different structures are defined for
Eq. (2.3) and Eq. (1.3). Setting n = 1 the Navier-Lamé differential equation together with a
pressure boundary condition constitutes the BVP for the equivalent homogeneous sphere.

In order to obtain the effective properties, as a homogenization condition, the displacement at
the outer boundary of the equivalent homogeneous sphere is equated to the one of the composite
sphere. This yields the effective compression modulus K, as well as the effective heat-dilatation
coefficient α and the effective curing-dilatation coefficient β, see [5] for more details.

2 Application to curing

In this section the results for the special case with three phases for a homogeneous mixture
(hom) and the heterogeneous mixture (het) are applied to curing. Related to hom, an equally
distributed mixture is assumed for n phases on the microscale according to Fig. 1.b. For this,
Voigt and Reuss bounds derived in [5] are applied. In particular we are interested in the effective
compression moduli, KV and KR, and the effective heat-dilatation coefficient, αV and αR, each in
terms of the degree of cure z. In addition, the effective curing-dilatation coefficient βest from [5]
is used which is not depending on z.

Fig. 1.c illustrates the micro-RVE with three partial volumes v(i), i = sol, ca, r over time t. Fig.
2.a shows the effective compression modulus K for the heterogeneous matrix versus the degree
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of cure z. The bounds KR and KV obtained from the homogeneous matrix are comparatively
plotted. Fig. 2.b shows the effective heat-dilatation coefficient α versus z. The bounds for
the effective heat-dilatation coefficient αR and αV are plotted in addition. Fig. 2.c shows
the effective curing-dilatation coefficient β and the estimate for the effective curing-dilatation
coefficient βest versus z. As a further result, Fig. 2.d shows the chemical part of the volumetric
strain. For the heterogeneous matrix, the trace of εcur in Eq. (2.3) is combined with β. The
result is denoted as ecur in Fig. 2.d, where βest is used in ecur for the homogeneous matrix.
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Figure 2. Effective properties and bounds versus the degree of cure: a) compression moduli, b)
heat-dilatation coefficients, c) curing-dilatation coefficients and d) volumetric curing strains.

Conclusions

We conclude, that the effective elastic and thermal properties lie within the Voigt and Reuss
bounds, whilst for the chemical part of the model, an analogous result is obtained for the
effective strains. This principal difference is a consequence of the assumptions for a homogeneous
distribution of the temperature change and an inhomogeneous distribution of curing in the
constitutive equations on the microscale.
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