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Micro Abstract
We present a residual a posteriori error estimator for frictional, elasto-plastic two-body contact
problems and finite elements of higher order. It is based on a mixed formulation in which the
constraints concerning contact, friction and plasticity are captured by Lagrange multipliers. To
be able to apply a semi-smooth Newton method we solve a primal-mixed problem and calculate
the plastic quantities in a post process. Reliability and suboptimal efficiency of the estimator are shown.
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Introduction

Elasto-plastic two-body contact problems play an important role in the simulation of many
manufacturing processes for instance in metal forming. Thus, there is a high interest in efficient
and accurate discretizations as well as solving algorithms. In this article, we focus on the
discretization aspect and shortly discuss a residual type a posteriori error estimator for this
problem class using a higher-order finite element discretization and a mesh adaptive algorithm
based on it. We obtain reliability of the estimator but only suboptimal efficiency. The adaptive
algorithm is applied on a 2d example, in which it shows optimal convergence rates for different
polynomial degrees.

1 Strong and weak problem formulation

We consider two contacting deformable bodies Ωm ⊂ Rd with m = 1, 2 and d = 2, 3 using
a elasto-plastic material law with linear isotropic hardening. Here, volume forces fm act on
them. The boundaries are given by Γm, m = 1, 2. With the outer normal vector n, we
define σn(um, pm) := σ(um, pm)n, σnn := n>σ(um, pm)n, and σnt,i := n>σ(um, pm)ti with
corresponding tangential vectors ti, i = 1, . . . , d − 1. We are interested in the displacements
u = (u1, u2), which fulfill for m = 1, 2 the following equations:

ε(um) = Amσ(um, pm) + pm in Ωm (1)

−div σ(um, pm) = fm in Ωm (2)

pm(τ − σ(um, pm)) ≥ 0 ∀τ with Fm,iso(τ, |pm|) ≤ 0 in Ωm (3)

um = 0 on ΓmD (4)

σn(um, pm) = fmN on ΓmN . (5)

Equation (1) describes the relation between the linearized strains ε(um) and the stresses
σ(um, pm). The strains are additively split in an elastic part Amσ(um, pm) and a plastic
part pm. The deviatoric part of a tensor τ is denoted by dev(τ). The flow function is defined
by Fm,iso(τ, η) = | dev(τ)| − (σm0 + Hmη) with the yield stress σm0 , the isotropic hardening



parameter Hm, and the equivalent plastic stress η. Both bodies are fixed on a nonempty set
ΓmD ⊂ Γm. On the Neumann boundary ΓmN , surface forces fmN are applied.

On the subsets ΓmC ⊂ Γm, contact between the two bodies can occur. Let Φ : Γ1
C → Γ2

C be a
bijective and smooth map between the contact boundary of the slave Ω1 and on the master
Ω2. Furthermore, we denote by nδ a generalized normal vector and corresponding tangential
vectors tδ. On Γ1

C the jump in direction of the generalized normal is given by [v]nδ and the one
in tangential direction by [v]tδ . The distance in the initial configuration is denoted by g. All in
all, we obtain the following geometrical contact conditions on Γ1

C :

[u]nδ ≤ g, σnδnδ(u
1) ≤ 0, σnδnδ(u

1)([u]nδ − g) = 0 (6)

σnδ(u
1) = −Θ∗σnδ(u

2). (7)

Here, (7) ensures the equality of the contact stresses on both contact boundaries. Furthermore,
we consider frictional side conditions on Γ1

C :∣∣σnδtδ(u1)
∣∣ ≤ s(σnδnδ(u1)) (8)∣∣σnδtδ(u1)
∣∣ < s(σnδnδ(u

1))⇒ [u]tδ = 0 (9)∣∣σnδtδ(u1)
∣∣ = s(σnδnδ(u

1))⇒ ∃α ∈ R≥0 : [u]tδ = ασnδtδ(u) (10)

The tangential stress σnδtδ(u
1) ist bounded by the frictional resistance s representing a general

friction law depending only on the normal contact stress.

Now, we give the weak problem formulation. It is based on the following function spaces: V :=
H1
D(Ω1,Rd) × H1

D(Ω2,Rd), Qm :=
{
q ∈ L2(Ωm;Rd×dsym)| tr(q) = 0 a.e. in Ωm

}
, Q := Q1 × Q2,

W = V ×Q, Λn :=
{
µ ∈ H̃− 1

2 (Γ1
C)
∣∣∣ ∀v ∈ H1/2

+ (Γ1
C) : 〈µ, v〉 ≥ 0 a.e.

}
,

Λt :=

{
µ ∈

(
H̃−1/2(Γ1

C)
)d−1

∣∣∣∣ 〈µ, [v]t〉 ≤ 〈s(λn), [v]t〉 a.e. ∀[v]t ∈
(
H1/2(Γ1

C)
)d−1

}
,

and ΛP := {µ ∈ Q | µ : µ ≤ 1} . Furthermore, we define the following bilinear and linear forms:

a : W ×W → R, a(w, z) :=
2∑

m=1

[(σ(um, pm), ε(vm)− qm)0 + (Hmpm, qm)0] ,

bn : Λn ×W → R, bn(µ, z) := 〈µ, [v]nδ〉,
bt : Λt ×W → R, bt(µ, z) := 〈µ, [v]tδ〉,

bP : ΛP ×W → R, bP (µ, z) :=

2∑
m=1

bmP (µm, zm) :=

2∑
m=1

(
µm, σmy q

m
)

0
,

F : V → R, F(v) :=

2∑
m=1

(fm, vm)0 + (fmN , v
m)0,ΓmN

.

The weak problem consists in finding (w, λP , λn, λt) ∈W × ΛP × Λn × Λt with w = (u, p) such
that

a(w, z) + bP (λP , z) + bn(λn, z) + bt(λt, z) = F(z) ∀z ∈W (11)

bP (µP − λP , w) + bn(µn − λn, w) + bt(µt − λt, w) ≤ 〈µn − λn, g〉 (12)

∀ (µP , µn, µt) ∈ ΛP × Λn × Λt.

2 Discretization

In this section, we introduce the discretization of the mixed problem (11)-(12). Let T mh be
an admissible triangulation of Ωm with mesh width h > 0 using quads or hexahedrons. The



triangulation of the contact boundary Γ1
C is given by BH . We use the affine-linear transformations

FmT and FE as well as the vector space Srl of polynomials of order r on the reference element
[−1, 1]l. We define the following discrete function spaces:

Mp
h(Ωm) :=

{
v ∈ L2(Ωm)

∣∣ ∀T ∈ T mh : v|T ◦ FmT ∈ Spd
}
,

V m
h,pm := {v ∈ HD(Ωm,R

d)
∣∣ v ∈Mpm

h (Ωm)}, Vh := V 1
h,p1 × V 2

h,p2 ,

Qh :=
{
q =

(
q1, q2

)
∈ Q

∣∣ qmij ∈Mp
h(Ωm), m = 1, 2

}
, Wh := Vh ×Qh,

Mq
H :=

{
v ∈ L2(Γ1

C)
∣∣ ∀E ∈ BH : v|E ◦ FE ∈ Sqd−1

}
,

Λn,H :=
{
v ∈Mq

H

∣∣ ∀E ∈ BH : ∀x ∈ Cq : v(FE(x)) ≥ 0
}
,

Λt,H := {v ∈ (Mq
H)d−1 | ∀E ∈ BH : ∀x ∈ Cq : v(FE(x)) ≤ s(λn)(FE(x))},

ΛP,h := {q ∈ Qh
∣∣∣ ∀m ∈ {1, 2} : ∀x ∈ Gm,d : q(x) : q(x) ≤ 1}.

The side conditions of the Lagrange multipliers are only defined on the finite set Cq ⊂ [−1, 1]d−1,
which consists in (q+ 1)d−1 Gauß-points. Furthermore, let Gm,d(T ) be the set of the transformed
Gauß-points on T and Gm,d :=

⋃
T∈T mh G

m,d(T ).

The discrete formulation of the mixed problem (11)-(12) reads: Find (wh, λP,h, λn,H , λt,H) ∈
Wh × ΛP,h × Λn,H × Λt,H , such that

a(wh, zh) +
2∑

m=1

(λmP,h, σ
m
0 q

m
h )0 + bn(λn,H , zh) + bt(λt,H , zh) = F(zh) ∀zh ∈Wh (13)

bP (µmP,h − λmP,h, wh)0 + bn(µn,H − λn,H , wh) + bt(µt,H − λt,H , wh) ≤ 〈µn,H − λn,H , g〉 (14)

∀ (µP,h, µn,H , µt,H) ∈ ΛP,h × Λn,H × Λt,H .

We solve the discrete problem using the techniques described in [1], where the elasto-plastic
part is formulated in primal form using a suitable projection. The plastic Lagrange multiplier
λP,h is determined in a simple post processing step, cf. [2, Section 4.3]. The discretization is
inf-sup-stable provided the term

∑2
m=1

(
hH−1 max{1, q}2p−1

)
is small enough indepently of

the discretization parameters. Numerical experiments show that the choice q = p − 1 and
H = 2 max{h1, h2} leads to a stable discretization. However, this condition has to be ensured
on adaptive meshes, locally.

Residual a posteriori error estimation

With respect to the reliability and efficiency of a residual type a posteriori error estimator, the
following result holds:

Proposition 1. There exist positve constants C, C0, and C1 such that

‖w − wh‖2W + ‖λP − λP,h‖20 + ‖λn − λn,H‖2−1/2 + ‖λt − λt,H‖2−1/2

≤ Cη2 ((λP,h)1, (λn,H)+, (λt,H)s)

and

η2 ((λP,h)1, (λn,H)+, (λt,H)s) ≤ C0

(
‖w − wh‖2W +

2∑
m=1

‖λmP − λmP,h‖20,Γ1
C

+ ‖λn − λn,H‖2−1/2,Γ1
C

+ ‖λt − λt,H‖2−1/2,Γ1
C

)
+ C1‖w − wh‖W + osc2

h(fΩ) + osc2
h(fN ).



(a) Adaptive mesh
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(b) Convergence

Figure 1. Adaptive mesh for polynomial degree p = 6 and convergence results for different polynomial
degrees.

Here, (λP,h)1, (λn,H)+, and (λt,H)s are projections on the admissible sets of the discrete Lagrange
multipliers. The data oscillation concerning the given problem data is denoted by osch. The
error estimator is given by

η2(µP , µn, µt) := η2
R +

2∑
m=1

‖λmP,h − µmP ‖20 + ‖λn,H − µn‖2−1/2,Γ1
C

+ ‖λt,H − µt‖2−1/2,Γ1
C

+ ‖([uh]n − g)+‖21/2,Γ1
C

+ |(λn,H , ([uh]n − g)+)0,Γ1
C
|+ |〈µn, g − [uh]n〉|

+ ΨF (wh)− 〈µt, [uh]t〉+ ΨP (wh)−
2∑

m=1

(µmP , σ
m
0 p

m
h )0 ,

where ηR is the standard residual error estimator, ΨF corresponds to the frictional energy and
ΨP to the plastic one.

Proof. [2, Korollar 1 and Satz 12].

Numerical results

We shortly present numerical results taken from [2, Beispiel 4]. Here, we consider an elastic-
plastic two body contact problem in 2D with a complex nonlinear friction law. In Figure 1(a),
an adaptive mesh for a polynomial degree of 6 is shown. Here, the boundary of the plastic zone
and the switching points between stick and slip are well resolved. The behaviour of the adaptive
algorithm is presented in Figure 1(b). We found here that the optimal order of convergence is
obtained using the adaptive algorithm for the different polynomial degrees.

Conclusions

In this article, we have presented a residual a posteriori error estimator for elasto-plastic two body
contact problems, which is reliable and suboptimal efficient. Numerical results substantiate that
the adpative algorithm based on it leads to optimal convergence of the underlying discretization.
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